These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 25502373)

  • 21. Automated prediction of 15N, 13Calpha, 13Cbeta and 13C' chemical shifts in proteins using a density functional database.
    Xu XP; Case DA
    J Biomol NMR; 2001 Dec; 21(4):321-33. PubMed ID: 11824752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory.
    Xu XP; Case DA
    Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determining valine side-chain rotamer conformations in proteins from methyl 13C chemical shifts: application to the 360 kDa half-proteasome.
    Hansen DF; Kay LE
    J Am Chem Soc; 2011 Jun; 133(21):8272-81. PubMed ID: 21545099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Bayesian-probability-based method for assigning protein backbone dihedral angles based on chemical shifts and local sequences.
    Wang J; Liu H
    J Biomol NMR; 2007 Jan; 37(1):31-41. PubMed ID: 17151953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of multiple torsion-angle constraints in U-(13)C,(15)N-labeled peptides: 3D (1)H-(15)N-(13)C-(1)H dipolar chemical shift NMR spectroscopy in rotating solids.
    Rienstra CM; Hohwy M; Mueller LJ; Jaroniec CP; Reif B; Griffin RG
    J Am Chem Soc; 2002 Oct; 124(40):11908-22. PubMed ID: 12358535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic resolution protein structure determination by three-dimensional transferred echo double resonance solid-state nuclear magnetic resonance spectroscopy.
    Nieuwkoop AJ; Wylie BJ; Franks WT; Shah GJ; Rienstra CM
    J Chem Phys; 2009 Sep; 131(9):095101. PubMed ID: 19739873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins.
    Frank A; Onila I; Möller HM; Exner TE
    Proteins; 2011 Jul; 79(7):2189-202. PubMed ID: 21557322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Secondary structural effects on protein NMR chemical shifts.
    Wang Y
    J Biomol NMR; 2004 Nov; 30(3):233-44. PubMed ID: 15754052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database.
    Ginzinger SW; Coles M
    J Biomol NMR; 2009 Mar; 43(3):179-85. PubMed ID: 19224375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts.
    Neal S; Nip AM; Zhang H; Wishart DS
    J Biomol NMR; 2003 Jul; 26(3):215-40. PubMed ID: 12766419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into the mobility of methyl-bearing side chains in proteins from (3)J(CC) and (3)J(CN) couplings.
    Chou JJ; Case DA; Bax A
    J Am Chem Soc; 2003 Jul; 125(29):8959-66. PubMed ID: 12862493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PPM_One: a static protein structure based chemical shift predictor.
    Li D; Brüschweiler R
    J Biomol NMR; 2015 Jul; 62(3):403-9. PubMed ID: 26091586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using neural network predicted secondary structure information in automatic protein NMR assignment.
    Choy WY; Sanctuary BC; Zhu G
    J Chem Inf Comput Sci; 1997; 37(6):1086-94. PubMed ID: 9392858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of ¹H chemical shift assignments of the interface residues on structure determinations of homodimeric proteins.
    Lin YJ; Kirchner DK; Güntert P
    J Magn Reson; 2012 Sep; 222():96-104. PubMed ID: 22858667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluctuations of backbone torsion angles obtained from NMR-determined structures and their prediction.
    Zhang T; Faraggi E; Zhou Y
    Proteins; 2010 Dec; 78(16):3353-62. PubMed ID: 20818661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.
    Yao J; Chung J; Eliezer D; Wright PE; Dyson HJ
    Biochemistry; 2001 Mar; 40(12):3561-71. PubMed ID: 11297422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings--an assessment of the interrelation of NMR restraints.
    Jensen PR; Axelsen JB; Lerche MH; Poulsen FM
    J Biomol NMR; 2004 Jan; 28(1):31-41. PubMed ID: 14739637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequential nearest-neighbor effects on computed 13Calpha chemical shifts.
    Vila JA; Serrano P; Wüthrich K; Scheraga HA
    J Biomol NMR; 2010 Sep; 48(1):23-30. PubMed ID: 20644980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subunit-specific backbone NMR assignments of a 64 kDa trp repressor/DNA complex: a role for N-terminal residues in tandem binding.
    Shan X; Gardner KH; Muhandiram DR; Kay LE; Arrowsmith CH
    J Biomol NMR; 1998 Apr; 11(3):307-18. PubMed ID: 9691278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins.
    Robustelli P; Kohlhoff K; Cavalli A; Vendruscolo M
    Structure; 2010 Aug; 18(8):923-33. PubMed ID: 20696393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.