These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An introduction to artificial neural networks in bioinformatics--application to complex microarray and mass spectrometry datasets in cancer studies. Lancashire LJ; Lemetre C; Ball GR Brief Bioinform; 2009 May; 10(3):315-29. PubMed ID: 19307287 [TBL] [Abstract][Full Text] [Related]
5. The extraction of information and knowledge from trained neural networks. Livingstone DJ; Browne A; Crichton R; Hudson BD; Whitley DC; Ford MG Methods Mol Biol; 2008; 458():231-48. PubMed ID: 19065813 [TBL] [Abstract][Full Text] [Related]
6. Science of the science, drug discovery and artificial neural networks. Patel J Curr Drug Discov Technol; 2013 Mar; 10(1):2-7. PubMed ID: 22725688 [TBL] [Abstract][Full Text] [Related]
7. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Agatonovic-Kustrin S; Beresford R J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714 [TBL] [Abstract][Full Text] [Related]
8. Biologically inspired intelligent decision making: a commentary on the use of artificial neural networks in bioinformatics. Manning T; Sleator RD; Walsh P Bioengineered; 2014; 5(2):80-95. PubMed ID: 24335433 [TBL] [Abstract][Full Text] [Related]
9. Computational tools for the modern andrologist. Niederberger C J Androl; 1996; 17(5):462-6. PubMed ID: 8957688 [TBL] [Abstract][Full Text] [Related]
10. A hybrid genetic-neural system for predicting protein secondary structure. Armano G; Mancosu G; Milanesi L; Orro A; Saba M; Vargiu E BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S3. PubMed ID: 16351752 [TBL] [Abstract][Full Text] [Related]
11. Overview of commonly used bioinformatics methods and their applications. Kapetanovic IM; Rosenfeld S; Izmirlian G Ann N Y Acad Sci; 2004 May; 1020():10-21. PubMed ID: 15208179 [TBL] [Abstract][Full Text] [Related]
13. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds. Ventura C; Latino DA; Martins F Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731 [TBL] [Abstract][Full Text] [Related]
16. A novel approach to the recognition of protein architecture from sequence using Fourier analysis and neural networks. Shepherd AJ; Gorse D; Thornton JM Proteins; 2003 Feb; 50(2):290-302. PubMed ID: 12486723 [TBL] [Abstract][Full Text] [Related]
17. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks. Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044 [TBL] [Abstract][Full Text] [Related]
18. Multi-layered greedy network-growing algorithm: extension of greedy network-growing algorithm to multi-layered networks. Kamimura R Int J Neural Syst; 2004 Feb; 14(1):9-26. PubMed ID: 15034944 [TBL] [Abstract][Full Text] [Related]
19. QSAR/QSPR as an application of artificial neural networks. Montañez-Godínez N; Martínez-Olguín AC; Deeb O; Garduño-Juárez R; Ramírez-Galicia G Methods Mol Biol; 2015; 1260():319-33. PubMed ID: 25502390 [TBL] [Abstract][Full Text] [Related]
20. Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors. Duardo-Sánchez A; Munteanu CR; Riera-Fernández P; López-Díaz A; Pazos A; González-Díaz H J Chem Inf Model; 2014 Jan; 54(1):16-29. PubMed ID: 24320872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]