These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 25502439)
41. Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature. Arend M; Brem A; Kuster TM; Günthardt-Goerg MS Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():169-76. PubMed ID: 22776350 [TBL] [Abstract][Full Text] [Related]
42. Seed dormancy cycling and mortality differ between two locally adapted populations of Arabidopsis thaliana. Postma FM; Lundemo S; Ågren J Ann Bot; 2016 Feb; 117(2):249-56. PubMed ID: 26637384 [TBL] [Abstract][Full Text] [Related]
43. Climate change-induced water stress suppresses the regeneration of the critically endangered forest tree Nyssa yunnanensis. Zhang S; Kang H; Yang W PLoS One; 2017; 12(8):e0182012. PubMed ID: 28763476 [TBL] [Abstract][Full Text] [Related]
44. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Reich PB; Sendall KM; Stefanski A; Rich RL; Hobbie SE; Montgomery RA Nature; 2018 Oct; 562(7726):263-267. PubMed ID: 30283137 [TBL] [Abstract][Full Text] [Related]
45. Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress. Masondo NA; Kulkarni MG; Finnie JF; Van Staden J Ecotoxicol Environ Saf; 2018 Jan; 147():43-48. PubMed ID: 28826029 [TBL] [Abstract][Full Text] [Related]
46. Species assemblage patterns around a dominant emergent tree are associated with drought resistance. Wyse SV; Macinnis-Ng CM; Burns BR; Clearwater MJ; Schwendenmann L Tree Physiol; 2013 Dec; 33(12):1269-83. PubMed ID: 24299988 [TBL] [Abstract][Full Text] [Related]
47. Common and distinct responses in phytohormone and vitamin E changes during seed burial and dormancy in Xyris bialata and X. peregrina. Garcia QS; Giorni VT; Müller M; Munné-Bosch S Plant Biol (Stuttg); 2012 Mar; 14(2):347-53. PubMed ID: 21972817 [TBL] [Abstract][Full Text] [Related]
48. Temperature thresholds of physically dormant seeds and plant functional response to fire: variation among species and relative impact of climate change. Ooi MK; Denham AJ; Santana VM; Auld TD Ecol Evol; 2014 Mar; 4(5):656-71. PubMed ID: 25035805 [TBL] [Abstract][Full Text] [Related]
49. Polyploidy affects the seed, dormancy and seedling characteristics of a perennial grass, conferring an advantage in stressful climates. Stevens AV; Nicotra AB; Godfree RC; Guja LK Plant Biol (Stuttg); 2020 May; 22(3):500-513. PubMed ID: 32011086 [TBL] [Abstract][Full Text] [Related]
50. Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides. Carón MM; De Frenne P; Brunet J; Chabrerie O; Cousins SA; De Backer L; Decocq G; Diekmann M; Heinken T; Kolb A; Naaf T; Plue J; Selvi F; Strimbeck GR; Wulf M; Verheyen K Plant Biol (Stuttg); 2015 Jan; 17(1):52-62. PubMed ID: 24750437 [TBL] [Abstract][Full Text] [Related]
51. Diversity of epicotyl dormancy among tropical montane forest species in Sri Lanka. Athugala YS; Jayasuriya KMGG; Gunarathne AMTA; Baskin CC Plant Biol (Stuttg); 2018 Sep; 20(5):916-925. PubMed ID: 29779244 [TBL] [Abstract][Full Text] [Related]
52. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses. Balachowski JA; Bristiel PM; Volaire FA Ann Bot; 2016 Aug; 118(2):357-68. PubMed ID: 27325898 [TBL] [Abstract][Full Text] [Related]
53. Some like it hot: Seed thermal threshold variation in obligate seeding Acacia pulchella along a climate gradient. Overton J; Ooi MKJ; Tangney R Sci Total Environ; 2024 Oct; 948():174929. PubMed ID: 39038678 [TBL] [Abstract][Full Text] [Related]
54. Global seed dormancy patterns are driven by macroclimate but not fire regime. Rosbakh S; Carta A; Fernández-Pascual E; Phartyal SS; Dayrell RLC; Mattana E; Saatkamp A; Vandelook F; Baskin J; Baskin C New Phytol; 2023 Oct; 240(2):555-564. PubMed ID: 37537732 [TBL] [Abstract][Full Text] [Related]
57. Ecological longevity of Polaskia chende (Cactaceae) seeds in the soil seed bank, seedling emergence and survival. Ordoñez-Salanueva CA; Orozco-Segovia A; Canales-Martínez M; Seal CE; Pritchard HW; Flores-Ortiz CM Plant Biol (Stuttg); 2017 Nov; 19(6):973-982. PubMed ID: 28787550 [TBL] [Abstract][Full Text] [Related]
58. Physiological and biochemical responses of Quercus pubescens to air warming and drought on acidic and calcareous soils. Contran N; Günthardt-Goerg MS; Kuster TM; Cerana R; Crosti P; Paoletti E Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():157-68. PubMed ID: 22672383 [TBL] [Abstract][Full Text] [Related]
59. Changes in phenological events in response to a global warming scenario reveal greater adaptability of winter annual compared with summer annual arabidopsis ecotypes. Footitt S; Hambidge AJ; Finch-Savage WE Ann Bot; 2021 Jan; 127(1):111-122. PubMed ID: 32722794 [TBL] [Abstract][Full Text] [Related]
60. Rain-based soil solarization for reducing the persistent seed banks of invasive plants in natural ecosystems - Acacia saligna as a model. Cohen O; Bar Kutiel P; Gamliel A; Katan J; Kurzbaum E; Weber G; Schubert I; Riov J Pest Manag Sci; 2019 Jul; 75(7):1933-1941. PubMed ID: 30575278 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]