These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 25502846)
1. Algebraic double cut and join : A group-theoretic approach to the operator on multichromosomal genomes. Bhatia S; Egri-Nagy A; Francis AR J Math Biol; 2015 Nov; 71(5):1149-78. PubMed ID: 25502846 [TBL] [Abstract][Full Text] [Related]
3. The solution space of sorting by DCJ. Braga MD; Stoye J J Comput Biol; 2010 Sep; 17(9):1145-65. PubMed ID: 20874401 [TBL] [Abstract][Full Text] [Related]
4. Extending the algebraic formalism for genome rearrangements to include linear chromosomes. Feijão P; Meidanis J IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):819-31. PubMed ID: 24334378 [TBL] [Abstract][Full Text] [Related]
5. An exact solver for the DCJ median problem. Zhang M; Arndt W; Tang J Pac Symp Biocomput; 2009; ():138-49. PubMed ID: 19209699 [TBL] [Abstract][Full Text] [Related]
6. Computation of perfect DCJ rearrangement scenarios with linear and circular chromosomes. Bérard S; Chateau A; Chauve C; Paul C; Tannier E J Comput Biol; 2009 Oct; 16(10):1287-309. PubMed ID: 19803733 [TBL] [Abstract][Full Text] [Related]
7. Sorting Linear Genomes with Rearrangements and Indels. Braga MD; Stoye J IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):500-6. PubMed ID: 26357261 [TBL] [Abstract][Full Text] [Related]
8. SCJ: a breakpoint-like distance that simplifies several rearrangement problems. Feijão P; Meidanis J IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1318-29. PubMed ID: 21339538 [TBL] [Abstract][Full Text] [Related]
9. The median problems on linear multichromosomal genomes: graph representation and fast exact solutions. Xu AW J Comput Biol; 2010 Sep; 17(9):1195-211. PubMed ID: 20874404 [TBL] [Abstract][Full Text] [Related]
10. Genome rearrangement by the double cut and join operation. Friedberg R; Darling AE; Yancopoulos S Methods Mol Biol; 2008; 452():385-416. PubMed ID: 18566774 [TBL] [Abstract][Full Text] [Related]
11. Algorithms for sorting unsigned linear genomes by the DCJ operations. Jiang H; Zhu B; Zhu D Bioinformatics; 2011 Feb; 27(3):311-6. PubMed ID: 21134895 [TBL] [Abstract][Full Text] [Related]
12. Maximum Likelihood Estimates of Rearrangement Distance: Implementing a Representation-Theoretic Approach. Terauds V; Sumner J Bull Math Biol; 2019 Feb; 81(2):535-567. PubMed ID: 30264286 [TBL] [Abstract][Full Text] [Related]
13. Multichromosomal median and halving problems under different genomic distances. Tannier E; Zheng C; Sankoff D BMC Bioinformatics; 2009 Apr; 10():120. PubMed ID: 19386099 [TBL] [Abstract][Full Text] [Related]
14. Position and Content Paradigms in Genome Rearrangements: The Wild and Crazy World of Permutations in Genomics. Bhatia S; Feijão P; Francis AR Bull Math Biol; 2018 Dec; 80(12):3227-3246. PubMed ID: 30288640 [TBL] [Abstract][Full Text] [Related]
15. Small parsimony for natural genomes in the DCJ-indel model. Doerr D; Chauve C J Bioinform Comput Biol; 2021 Dec; 19(6):2140009. PubMed ID: 34806948 [TBL] [Abstract][Full Text] [Related]