These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 25502922)
1. Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering. Won JE; Mateos-Timoneda MA; Castano O; Planell JA; Seo SJ; Lee EJ; Han CM; Kim HW Biotechnol Lett; 2015 Apr; 37(4):935-42. PubMed ID: 25502922 [TBL] [Abstract][Full Text] [Related]
2. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729 [TBL] [Abstract][Full Text] [Related]
3. Odontogenic responses of human dental pulp cells to collagen/nanobioactive glass nanocomposites. Bae WJ; Min KS; Kim JJ; Kim JJ; Kim HW; Kim EC Dent Mater; 2012 Dec; 28(12):1271-9. PubMed ID: 23031484 [TBL] [Abstract][Full Text] [Related]
4. Surface modification of porous polycaprolactone/biphasic calcium phosphate scaffolds for bone regeneration in rat calvaria defect. Kim JH; Linh NT; Min YK; Lee BT J Biomater Appl; 2014 Oct; 29(4):624-35. PubMed ID: 24939961 [TBL] [Abstract][Full Text] [Related]
5. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Roohani-Esfahani SI; Nouri-Khorasani S; Lu ZF; Appleyard RC; Zreiqat H Acta Biomater; 2011 Mar; 7(3):1307-18. PubMed ID: 20971219 [TBL] [Abstract][Full Text] [Related]
6. Covalent RGD modification of the inner pore surface of polycaprolactone scaffolds. Gabriel M; Nazmi K; Dahm M; Zentner A; Vahl CF; Strand D J Biomater Sci Polym Ed; 2012; 23(7):941-53. PubMed ID: 21457620 [TBL] [Abstract][Full Text] [Related]
7. Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering. Kim JY; Lee TJ; Cho DW; Kim BS J Biomater Sci Polym Ed; 2010; 21(6-7):951-62. PubMed ID: 20482995 [TBL] [Abstract][Full Text] [Related]
8. Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug. El-Fiqi A; Kim JH; Kim HW ACS Appl Mater Interfaces; 2015 Jan; 7(2):1140-52. PubMed ID: 25531645 [TBL] [Abstract][Full Text] [Related]
9. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098 [TBL] [Abstract][Full Text] [Related]
10. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [TBL] [Abstract][Full Text] [Related]
11. Development of robotic dispensed bioactive scaffolds and human adipose-derived stem cell culturing for bone tissue engineering. Oh CH; Hong SJ; Jeong I; Yu HS; Jegal SH; Kim HW Tissue Eng Part C Methods; 2010 Aug; 16(4):561-71. PubMed ID: 19722827 [TBL] [Abstract][Full Text] [Related]
12. Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces. Tamjid E; Simchi A; Dunlop JW; Fratzl P; Bagheri R; Vossoughi M J Biomed Mater Res A; 2013 Oct; 101(10):2796-807. PubMed ID: 23463703 [TBL] [Abstract][Full Text] [Related]
13. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering. Rosellini E; Cristallini C; Guerra GD; Barbani N J Biomater Sci Polym Ed; 2015; 26(9):515-33. PubMed ID: 25787756 [TBL] [Abstract][Full Text] [Related]
14. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801 [TBL] [Abstract][Full Text] [Related]
15. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification. Yildirim ED; Besunder R; Pappas D; Allen F; Güçeri S; Sun W Biofabrication; 2010 Mar; 2(1):014109. PubMed ID: 20811124 [TBL] [Abstract][Full Text] [Related]
16. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
17. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering. Lei B; Shin KH; Noh DY; Jo IH; Koh YH; Kim HE; Kim SE Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1102-8. PubMed ID: 23827548 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration. Poh PS; Hutmacher DW; Stevens MM; Woodruff MA Biofabrication; 2013 Dec; 5(4):045005. PubMed ID: 24192136 [TBL] [Abstract][Full Text] [Related]
19. Comparison of bone marrow stromal cell behaviors on poly(caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation. Zhang H; Hollister S J Biomater Sci Polym Ed; 2009; 20(14):1975-93. PubMed ID: 19874672 [TBL] [Abstract][Full Text] [Related]
20. Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. Kang MS; Kim JH; Singh RK; Jang JH; Kim HW Acta Biomater; 2015 Apr; 16():103-16. PubMed ID: 25617805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]