BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25503277)

  • 1. Direct detection of microRNA based on plasmon hybridization of nanoparticle dimers.
    Wang Y; MacLachlan E; Nguyen BK; Fu G; Peng C; Chen JI
    Analyst; 2015 Feb; 140(4):1140-8. PubMed ID: 25503277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive electrochemical detection of microRNA-21 based on propylamine-functionalized mesoporous silica with glucometer readout.
    Deng K; Zhang Y; Tong X
    Anal Bioanal Chem; 2018 Mar; 410(7):1863-1871. PubMed ID: 29353431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification.
    Ding X; Yan Y; Li S; Zhang Y; Cheng W; Cheng Q; Ding S
    Anal Chim Acta; 2015 May; 874():59-65. PubMed ID: 25910447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dark-Field Microwells toward High-Throughput Direct miRNA Sensing with Gold Nanoparticles.
    Hwu S; Blickenstorfer Y; Tiefenauer RF; Gonnelli C; Schmidheini L; Lüchtefeld I; Hoogenberg BJ; Gisiger AB; Vörös J
    ACS Sens; 2019 Jul; 4(7):1950-1956. PubMed ID: 31310098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures.
    Liu S; Su W; Li Z; Ding X
    Biosens Bioelectron; 2015 Sep; 71():57-61. PubMed ID: 25884735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple strategy for the fabrication of gold-modified single nanopores and its application for miRNA sensing.
    Yang C; Wang H; Tang H; Zhao D; Li Y
    Chem Commun (Camb); 2019 Aug; 55(69):10288-10291. PubMed ID: 31396601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy.
    Chan HM; Chan LS; Wong RN; Li HW
    Anal Chem; 2010 Aug; 82(16):6911-8. PubMed ID: 20704380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic nanobiosensors for detection of microRNA cancer biomarkers in clinical samples.
    Crawford BM; Wang HN; Stolarchuk C; von Furstenberg RJ; Strobbia P; Zhang D; Qin X; Owzar K; Garman KS; Vo-Dinh T
    Analyst; 2020 Jul; 145(13):4587-4594. PubMed ID: 32436503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of single nucleotide mismatches using a scalable, flexible, and transparent three-dimensional nanostructure-based plasmonic miRNA sensor with high sensitivity.
    Na HK; Wi JS; Son HY; Ok JG; Huh YM; Lee TG
    Biosens Bioelectron; 2018 Aug; 113():39-45. PubMed ID: 29727750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrochemical signal 'off-on' sensing platform for microRNA detection.
    Yin H; Zhou Y; Chen C; Zhu L; Ai S
    Analyst; 2012 Mar; 137(6):1389-95. PubMed ID: 22311172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four-way junction formation promoting ultrasensitive electrochemical detection of microRNA.
    Labib M; Ghobadloo SM; Khan N; Kolpashchikov DM; Berezovski MV
    Anal Chem; 2013 Oct; 85(20):9422-7. PubMed ID: 24047131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-mode electrochemical sensing of ultralow microRNA levels.
    Labib M; Khan N; Ghobadloo SM; Cheng J; Pezacki JP; Berezovski MV
    J Am Chem Soc; 2013 Feb; 135(8):3027-38. PubMed ID: 23362834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic bead-based hybridization assay for electrochemical detection of microRNA.
    Bartosik M; Hrstka R; Palecek E; Vojtesek B
    Anal Chim Acta; 2014 Feb; 813():35-40. PubMed ID: 24528657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical detection of microRNAs via gap hybridization assay.
    Pöhlmann C; Sprinzl M
    Anal Chem; 2010 Jun; 82(11):4434-40. PubMed ID: 20433153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors.
    Tran HV; Piro B
    Mikrochim Acta; 2021 Mar; 188(4):128. PubMed ID: 33740140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals.
    Li J; Schachermeyer S; Wang Y; Yin Y; Zhong W
    Anal Chem; 2009 Dec; 81(23):9723-9. PubMed ID: 19831385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA detection using lateral flow nucleic acid strips with gold nanoparticles.
    Hou SY; Hsiao YL; Lin MS; Yen CC; Chang CS
    Talanta; 2012 Sep; 99():375-9. PubMed ID: 22967567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA detection based on analyte triggered nanoparticle localization on a tetrahedral DNA modified electrode followed by hybridization chain reaction dual amplification.
    Miao P; Tang Y; Yin J
    Chem Commun (Camb); 2015 Nov; 51(86):15629-32. PubMed ID: 26376704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes.
    Degliangeli F; Kshirsagar P; Brunetti V; Pompa PP; Fiammengo R
    J Am Chem Soc; 2014 Feb; 136(6):2264-7. PubMed ID: 24491135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-to-Many Single Entity Electrochemistry Biosensing for Ultrasensitive Detection of microRNA.
    Bai YY; Wu Z; Xu CM; Zhang L; Feng J; Pang DW; Zhang ZL
    Anal Chem; 2020 Jan; 92(1):853-858. PubMed ID: 31755700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.