These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 25503317)

  • 1. Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains.
    Przybylski D; Rohwerder T; Dilßner C; Maskow T; Harms H; Müller RH
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2131-45. PubMed ID: 25503317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of the building block 2-hydroxyisobutyrate from fructose and butyrate by Cupriavidus necator H16.
    Przybylski D; Rohwerder T; Harms H; Yaneva N; Müller RH
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8875-85. PubMed ID: 23942876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction engineering studies for the production of 2-hydroxyisobutyric acid with recombinant Cupriavidus necator H 16.
    Hoefel T; Wittmann E; Reinecke L; Weuster-Botz D
    Appl Microbiol Biotechnol; 2010 Sep; 88(2):477-84. PubMed ID: 20625719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermophilic Coenzyme B12-Dependent Acyl Coenzyme A (CoA) Mutase from Kyrpidia tusciae DSM 2912 Preferentially Catalyzes Isomerization of (R)-3-Hydroxybutyryl-CoA and 2-Hydroxyisobutyryl-CoA.
    Weichler MT; Kurteva-Yaneva N; Przybylski D; Schuster J; Müller RH; Harms H; Rohwerder T
    Appl Environ Microbiol; 2015 Jul; 81(14):4564-72. PubMed ID: 25911482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of 2-Hydroxyisobutyric Acid from Methanol by Methylobacterium extorquens AM1 Expressing (R)-3-Hydroxybutyryl Coenzyme A-Isomerizing Enzymes.
    Rohde MT; Tischer S; Harms H; Rohwerder T
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27836853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isopropanol production with engineered Cupriavidus necator as bioproduction platform.
    Grousseau E; Lu J; Gorret N; Guillouet SE; Sinskey AJ
    Appl Microbiol Biotechnol; 2014 May; 98(9):4277-90. PubMed ID: 24604499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions.
    Tang R; Weng C; Peng X; Han Y
    Metab Eng; 2020 Sep; 61():11-23. PubMed ID: 32348842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Cupriavidus necator H16 for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO
    Kim S; Jang YJ; Gong G; Lee SM; Um Y; Kim KH; Ko JK
    Microb Cell Fact; 2022 Nov; 21(1):231. PubMed ID: 36335362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon.
    Rohwerder T; Müller RH
    Microb Cell Fact; 2010 Feb; 9():13. PubMed ID: 20184738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial synthesis of poly((R)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator.
    Fukui T; Suzuki M; Tsuge T; Nakamura S
    Biomacromolecules; 2009 Apr; 10(4):700-6. PubMed ID: 19267466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon dioxide valorization into resveratrol via lithoautotrophic fermentation using engineered Cupriavidus necator H16.
    Jang Y; Lee YJ; Gong G; Lee SM; Um Y; Kim KH; Ko JK
    Microb Cell Fact; 2024 Apr; 23(1):122. PubMed ID: 38678199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production.
    Crépin L; Lombard E; Guillouet SE
    Metab Eng; 2016 Sep; 37():92-101. PubMed ID: 27212691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Cupriavidus necator H16 for heterotrophic and autotrophic production of myo-inositol.
    Wang X; Wang K; Wang L; Luo H; Wang Y; Wang Y; Tu T; Qin X; Su X; Bai Y; Yao B; Huang H; Zhang J
    Bioresour Technol; 2023 Jan; 368():128321. PubMed ID: 36379295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production.
    Li Z; Xin X; Xiong B; Zhao D; Zhang X; Bi C
    Microb Cell Fact; 2020 Dec; 19(1):228. PubMed ID: 33308236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterotrophic and autotrophic production of L-isoleucine and L-valine by engineered Cupriavidus necator H16.
    Wang L; Yao J; Tu T; Yao B; Zhang J
    Bioresour Technol; 2024 Apr; 398():130538. PubMed ID: 38452952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Krieg T; Sydow A; Faust S; Huth I; Holtmann D
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1879-1882. PubMed ID: 29232490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Overexpression of Phasin and Regulator Genes Promoting the Synthesis of Polyhydroxybutyrate in Cupriavidus necator H16 under Nonstress Conditions.
    Tang R; Peng X; Weng C; Han Y
    Appl Environ Microbiol; 2022 Jan; 88(2):e0145821. PubMed ID: 34731058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Cupriavidus necator H16 for the autotrophic production of (R)-1,3-butanediol.
    Gascoyne JL; Bommareddy RR; Heeb S; Malys N
    Metab Eng; 2021 Sep; 67():262-276. PubMed ID: 34224897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The alkyl tert-butyl ether intermediate 2-hydroxyisobutyrate is degraded via a novel cobalamin-dependent mutase pathway.
    Rohwerder T; Breuer U; Benndorf D; Lechner U; Müller RH
    Appl Environ Microbiol; 2006 Jun; 72(6):4128-35. PubMed ID: 16751524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Engineering of a D-xylose metabolic pathway in eutropha W50].
    Liu K; Liu G; Zhang Y; Ding J; Weng W
    Wei Sheng Wu Xue Bao; 2014 Jan; 54(1):42-52. PubMed ID: 24783853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.