These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25503374)

  • 1. Deciphering the genome repertoire of Pseudomonas sp. M1 toward β-myrcene biotransformation.
    Soares-Castro P; Santos PM
    Genome Biol Evol; 2014 Dec; 7(1):1-17. PubMed ID: 25503374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Characterization of a 28-Kilobase Catabolic Island from Pseudomonas sp. Strain M1 Involved in Biotransformation of β-Myrcene and Related Plant-Derived Volatiles.
    Soares-Castro P; Montenegro-Silva P; Heipieper HJ; Santos PM
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28213543
    [No Abstract]   [Full Text] [Related]  

  • 3. Bioprospection of the bacterial β-myrcene-biotransforming trait in the rhizosphere.
    Soares-Castro P; Soares F; Reis F; Lino-Neto T; Santos PM
    Appl Microbiol Biotechnol; 2023 Aug; 107(16):5209-5224. PubMed ID: 37405434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and sequencing of beta-myrcene catabolism genes from Pseudomonas sp. strain M1.
    Iurescia S; Marconi AM; Tofani D; Gambacorta A; Paternò A; Devirgiliis C; van der Werf MJ; Zennaro E
    Appl Environ Microbiol; 1999 Jul; 65(7):2871-6. PubMed ID: 10388678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation to beta-myrcene catabolism in Pseudomonas sp. M1: an expression proteomics analysis.
    Santos PM; Sá-Correia I
    Proteomics; 2009 Nov; 9(22):5101-11. PubMed ID: 19798672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of beta-myrcene to geraniol by a strain of Rhodococcus erythropolis isolated by selective enrichment from hop plants.
    Thompson ML; Marriott R; Dowle A; Grogan G
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):721-30. PubMed ID: 19707757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxygen-independent metabolism of cyclic monoterpenes in Castellaniella defragrans 65Phen.
    Petasch J; Disch EM; Markert S; Becher D; Schweder T; Hüttel B; Reinhardt R; Harder J
    BMC Microbiol; 2014 Jun; 14():164. PubMed ID: 24952578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of acyclic monoterpenoids by Debaryomyces sp., Kluyveromyces sp., and Pichia sp. strains of environmental origin.
    Ponzoni C; Gasparetti C; Goretti M; Turchetti B; Pagnoni UM; Cramarossa MR; Forti L; Buzzini P
    Chem Biodivers; 2008 Mar; 5(3):471-83. PubMed ID: 18357555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Draft genome of formaldehyde-degrading strain, Pseudomonas monteilii IOFA19.
    Liu Y; Chen X; Blom J; Yi Z; Wen J; Zeng R
    Mar Genomics; 2014 Jun; 15():1-2. PubMed ID: 24798874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of monoterpene biotransformation in two pseudomonads.
    Bicas JL; Fontanille P; Pastore GM; Larroche C
    J Appl Microbiol; 2008 Dec; 105(6):1991-2001. PubMed ID: 19120646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1.
    Santos PM; Sá-Correia I
    J Biotechnol; 2007 Sep; 131(4):371-8. PubMed ID: 17826858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in
    Shettigar M; Balotra S; Kasprzak A; Pearce SL; Lacey MJ; Taylor MC; Liu JW; Cahill D; Oakeshott JG; Pandey G
    Appl Environ Microbiol; 2020 May; 86(10):. PubMed ID: 32198167
    [No Abstract]   [Full Text] [Related]  

  • 13. Complete genome sequence of Pseudomonas sp. strain VLB120 a solvent tolerant, styrene degrading bacterium, isolated from forest soil.
    Köhler KA; Rückert C; Schatschneider S; Vorhölter FJ; Szczepanowski R; Blank LM; Niehaus K; Goesmann A; Pühler A; Kalinowski J; Schmid A
    J Biotechnol; 2013 Dec; 168(4):729-30. PubMed ID: 24161918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance.
    Orro A; Cappelletti M; D'Ursi P; Milanesi L; Di Canito A; Zampolli J; Collina E; Decorosi F; Viti C; Fedi S; Presentato A; Zannoni D; Di Gennaro P
    PLoS One; 2015; 10(10):e0139467. PubMed ID: 26426997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Draft whole-genome sequence of the antibiotic-producing soil isolate Pseudomonas sp. strain 250J.
    Molina-Santiago C; Udaondo Z; Ramos JL
    Environ Microbiol Rep; 2015 Apr; 7(2):288-92. PubMed ID: 25403737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic insights into the global response to phenol in the phenol-biodegrading strain Pseudomonas sp. M1 revealed by quantitative proteomics.
    Santos PM; Roma V; Benndorf D; von Bergen M; Harms H; Sá-Correia I
    OMICS; 2007; 11(3):233-51. PubMed ID: 17883337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomics Insights into
    Gallardo-Benavente C; Campo-Giraldo JL; Castro-Severyn J; Quiroz A; Pérez-Donoso JM
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33514061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into xenobiotic tolerance of Antarctic bacteria: transcriptomic analysis of Pseudomonas sp. TNT3 during 2,4,6-trinitrotoluene biotransformation.
    Cabrera MÁ; Márquez SL; Pérez-Donoso JM
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):17256-17274. PubMed ID: 38337121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of beta-myrcene by the larvae of common cutworm (Spodoptera litura).
    Miyazawa M; Murata T
    J Agric Food Chem; 2000 Feb; 48(2):123-5. PubMed ID: 10691603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterologous expression of geraniol dehydrogenase for identifying the metabolic pathways involved in the biotransformation of citral by Acinetobacter sp. Tol 5.
    Usami A; Ishikawa M; Hori K
    Biosci Biotechnol Biochem; 2018 Nov; 82(11):2012-2020. PubMed ID: 30096260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.