These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25503392)

  • 1. A stable ZnCo2O4 cocatalyst for photocatalytic CO2 reduction.
    Wang S; Ding Z; Wang X
    Chem Commun (Camb); 2015 Jan; 51(8):1517-9. PubMed ID: 25503392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A perovskite oxide LaCoO
    Qin J; Lin L; Wang X
    Chem Commun (Camb); 2018 Feb; 54(18):2272-2275. PubMed ID: 29435527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twin defects engineered Pd cocatalyst on C
    Lang Q; Hu W; Zhou P; Huang T; Zhong S; Yang L; Chen J; Bai S
    Nanotechnology; 2017 Dec; 28(48):484003. PubMed ID: 28980525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light.
    Wang S; Hou Y; Wang X
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4327-35. PubMed ID: 25646682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous ZnCo2O4 nanoflakes with bifunctional electrocatalytic activities toward efficiencies of rechargeable lithium-oxygen batteries in aprotic media.
    Hung TF; Mohamed SG; Shen CC; Tsai YQ; Chang WS; Liu RS
    Nanoscale; 2013 Dec; 5(24):12115-9. PubMed ID: 24150659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effect in the heterostructure of ZnCo
    Deka Boruah B; Maji A; Misra A
    Nanoscale; 2017 Jul; 9(27):9411-9420. PubMed ID: 28657080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production.
    Yang J; Yan H; Zong X; Wen F; Liu M; Li C
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110430. PubMed ID: 23816907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures.
    Xie S; Zhang Q; Liu G; Wang Y
    Chem Commun (Camb); 2016 Jan; 52(1):35-59. PubMed ID: 26540265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergetic effect of dual cocatalysts in photocatalytic H₂ production on Pd-IrOx/TiO₂: a new insight into dual cocatalyst location.
    Ma Y; Chong R; Zhang F; Xu Q; Shen S; Han H; Li C
    Phys Chem Chem Phys; 2014 Sep; 16(33):17734-42. PubMed ID: 25030604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction.
    Wang S; Lin J; Wang X
    Phys Chem Chem Phys; 2014 Jul; 16(28):14656-60. PubMed ID: 24921181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion.
    Fan W; Zhang Q; Wang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2632-49. PubMed ID: 23322026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The KCaSrTa5O15 photocatalyst with tungsten bronze structure for water splitting and CO2 reduction.
    Takayama T; Tanabe K; Saito K; Iwase A; Kudo A
    Phys Chem Chem Phys; 2014 Nov; 16(44):24417-22. PubMed ID: 25301205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic reduction of CO2 and protons using water as an electron donor over potassium tantalate nanoflakes.
    Li K; Handoko AD; Khraisheh M; Tang J
    Nanoscale; 2014 Aug; 6(16):9767-73. PubMed ID: 25007379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt imidazolate metal-organic frameworks photosplit CO(2) under mild reaction conditions.
    Wang S; Yao W; Lin J; Ding Z; Wang X
    Angew Chem Int Ed Engl; 2014 Jan; 53(4):1034-8. PubMed ID: 24339134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation.
    Chang K; Mei Z; Wang T; Kang Q; Ouyang S; Ye J
    ACS Nano; 2014 Jul; 8(7):7078-87. PubMed ID: 24923678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles.
    Xiang Q; Yu J; Jaroniec M
    J Am Chem Soc; 2012 Apr; 134(15):6575-8. PubMed ID: 22458309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts.
    Yu J; Wang K; Xiao W; Cheng B
    Phys Chem Chem Phys; 2014 Jun; 16(23):11492-501. PubMed ID: 24801641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors.
    Liu B; Liu B; Wang Q; Wang X; Xiang Q; Chen D; Shen G
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10011-7. PubMed ID: 24050440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.