These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25503399)

  • 1. Are thermodynamic cycles necessary for continuum solvent calculation of pKas and reduction potentials?
    Ho J
    Phys Chem Chem Phys; 2015 Jan; 17(4):2859-68. PubMed ID: 25503399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculating Free Energy Changes in Continuum Solvation Models.
    Ho J; Ertem MZ
    J Phys Chem B; 2016 Feb; 120(7):1319-29. PubMed ID: 26878566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation.
    Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2011 Dec; 115(49):14556-62. PubMed ID: 21875126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First principles pKa calculations on carboxylic acids using the SMD solvation model: effect of thermodynamic cycle, model chemistry, and explicit solvent molecules.
    Sutton CC; Franks GV; da Silva G
    J Phys Chem B; 2012 Oct; 116(39):11999-2006. PubMed ID: 22920269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum mechanical continuum solvation models for ionic liquids.
    Bernales VS; Marenich AV; Contreras R; Cramer CJ; Truhlar DG
    J Phys Chem B; 2012 Aug; 116(30):9122-9. PubMed ID: 22734466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical Evaluation of Implicit Solvent Models for Predicting Aqueous Oxidation Potentials of Neutral Organic Compounds.
    Guerard JJ; Arey JS
    J Chem Theory Comput; 2013 Nov; 9(11):5046-58. PubMed ID: 26583419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models.
    Bryantsev VS; Diallo MS; Goddard WA
    J Phys Chem B; 2008 Aug; 112(32):9709-19. PubMed ID: 18646800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution.
    Tang E; Di Tommaso D; de Leeuw NH
    Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations.
    Riccardi D; Guo HB; Parks JM; Gu B; Liang L; Smith JC
    J Chem Theory Comput; 2013 Jan; 9(1):555-69. PubMed ID: 26589054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile.
    Namazian M; Coote ML
    J Phys Chem A; 2007 Aug; 111(30):7227-32. PubMed ID: 17625811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the energy of the water exchange reaction and free energy of solvation for the uranyl ion in aqueous solution.
    Gutowski KE; Dixon DA
    J Phys Chem A; 2006 Jul; 110(28):8840-56. PubMed ID: 16836448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized parameters for continuum solvation calculations with carbohydrates.
    Green DF
    J Phys Chem B; 2008 Apr; 112(16):5238-49. PubMed ID: 18386862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals.
    Keith JA; Carter EA
    J Chem Theory Comput; 2012 Sep; 8(9):3187-206. PubMed ID: 26605730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.
    Carvalho NF; Pliego JR
    Phys Chem Chem Phys; 2015 Oct; 17(40):26745-55. PubMed ID: 26395146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Equilibrium of Zinc Acetate Complexes in Ethanol Solution. A Theoretical Description through Thermodynamic Cycles.
    Reyna-Luna J; Flores R; Gómez-Balderas R; Franco-Pérez M
    J Phys Chem B; 2020 Apr; 124(16):3355-3370. PubMed ID: 32216349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U
    J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ambiguities in solvation free energies from cluster-continuum quasichemical theory: lithium cation in protic and aprotic solvents.
    Itkis D; Cavallo L; Yashina LV; Minenkov Y
    Phys Chem Chem Phys; 2021 Aug; 23(30):16077-16088. PubMed ID: 34291782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water.
    Wang ZX; Duan Y
    J Comput Chem; 2004 Nov; 25(14):1699-716. PubMed ID: 15362127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.