These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 25503405)

  • 1. Dynamically controlling the emission of single excitons in photonic crystal cavities.
    Pagliano F; Cho Y; Xia T; van Otten F; Johne R; Fiore A
    Nat Commun; 2014 Dec; 5():5786. PubMed ID: 25503405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Spin-Photon Interface Using Charge-Tunable Quantum Dots Strongly Coupled to a Cavity.
    Luo Z; Sun S; Karasahin A; Bracker AS; Carter SG; Yakes MK; Gammon D; Waks E
    Nano Lett; 2019 Oct; 19(10):7072-7077. PubMed ID: 31483668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Matter Interaction and Lasing in Lead Halide Perovskites.
    Schlaus AP; Spencer MS; Zhu XY
    Acc Chem Res; 2019 Oct; 52(10):2950-2959. PubMed ID: 31571486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the coupling between quantum dot and microdisk with photonic crystal nanobeam cavity.
    Zhao Y; Chen LH; Wang XH
    Opt Express; 2019 Jul; 27(15):20211-20220. PubMed ID: 31510119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.
    Hughes S; Agarwal GS
    Phys Rev Lett; 2017 Feb; 118(6):063601. PubMed ID: 28234504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcavity controlled coupling of excitonic qubits.
    Albert F; Sivalertporn K; Kasprzak J; Strauß M; Schneider C; Höfling S; Kamp M; Forchel A; Reitzenstein S; Muljarov EA; Langbein W
    Nat Commun; 2013; 4():1747. PubMed ID: 23612288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities.
    Calic M; Gallo P; Felici M; Atlasov KA; Dwir B; Rudra A; Biasiol G; Sorba L; Tarel G; Savona V; Kapon E
    Phys Rev Lett; 2011 Jun; 106(22):227402. PubMed ID: 21702633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide.
    Bose R; Sridharan D; Solomon GS; Waks E
    Opt Express; 2011 Mar; 19(6):5398-409. PubMed ID: 21445179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system.
    Kasprzak J; Reitzenstein S; Muljarov EA; Kistner C; Schneider C; Strauss M; Höfling S; Forchel A; Langbein W
    Nat Mater; 2010 Apr; 9(4):304-8. PubMed ID: 20208523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent photonic coupling of semiconductor quantum dots.
    Reitzenstein S; Löffler A; Hofmann C; Kubanek A; Kamp M; Reithmaier JP; Forchel A; Kulakovskii VD; Keldysh LV; Ponomarev IV; Reinecke TL
    Opt Lett; 2006 Jun; 31(11):1738-40. PubMed ID: 16688279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Third emission mechanism in solid-state nanocavity quantum electrodynamics.
    Yamaguchi M; Asano T; Noda S
    Rep Prog Phys; 2012 Sep; 75(9):096401. PubMed ID: 22885777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast non-local control of spontaneous emission.
    Jin CY; Johne R; Swinkels MY; Hoang TB; Midolo L; van Veldhoven PJ; Fiore A
    Nat Nanotechnol; 2014 Nov; 9(11):886-90. PubMed ID: 25218324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots.
    Rakher MT; Stoltz NG; Coldren LA; Petroff PM; Bouwmeester D
    Phys Rev Lett; 2009 Mar; 102(9):097403. PubMed ID: 19392565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical coupling of individual air-suspended carbon nanotubes to silicon microcavities.
    Terashima W; K Kato Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2024; 100(6):320-334. PubMed ID: 38866479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling Excitons in an Atomically Thin Membrane with a Mirror.
    Zhou Y; Scuri G; Sung J; Gelly RJ; Wild DS; De Greve K; Joe AY; Taniguchi T; Watanabe K; Kim P; Lukin MD; Park H
    Phys Rev Lett; 2020 Jan; 124(2):027401. PubMed ID: 32004011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system.
    Hughes S; Yao P
    Opt Express; 2009 Mar; 17(5):3322-30. PubMed ID: 19259169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity.
    Brodbeck S; De Liberato S; Amthor M; Klaas M; Kamp M; Worschech L; Schneider C; Höfling S
    Phys Rev Lett; 2017 Jul; 119(2):027401. PubMed ID: 28753330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.