These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 25503556)
1. Expression of the receptor for advanced glycation end products, a target for high mobility group box 1 protein, and its role in chronic recalcitrant rhinosinusitis with nasal polyps. Dzaman K; Szczepanski MJ; Molinska-Glura M; Krzeski A; Zagor M Arch Immunol Ther Exp (Warsz); 2015 Jun; 63(3):223-30. PubMed ID: 25503556 [TBL] [Abstract][Full Text] [Related]
2. High motility group box 1 (HMGB1) protein and its receptor for advanced glycation end products (RAGE) expression in chronic rhinosinusitis without nasal polyps. Dzaman K; Zagor M; Molinska-Glura M; Krzeski A Folia Histochem Cytobiol; 2015; 53(1):70-8. PubMed ID: 25772690 [TBL] [Abstract][Full Text] [Related]
3. Increase of high mobility group box chromosomal protein 1 in eosinophilic chronic rhinosinusitis with nasal polyps. Chen D; Mao M; Bellussi LM; Passali D; Chen L Int Forum Allergy Rhinol; 2014 Jun; 4(6):453-62. PubMed ID: 24504744 [TBL] [Abstract][Full Text] [Related]
4. Endoscopic sinus surgery for chronic rhinosinusitis with nasal polyps: Clinical outcome and predictive factors of recurrence. Veloso-Teles R; Cerejeira R Am J Rhinol Allergy; 2017 Jan; 31(1):56-62. PubMed ID: 28234156 [TBL] [Abstract][Full Text] [Related]
5. Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps? Vetuschi A; Pompili S; Di Marco GP; Calvaruso F; Iacomino E; Angelosante L; Festuccia C; Colapietro A; Sferra R Eur J Histochem; 2020 Jan; 64(1):. PubMed ID: 31988531 [TBL] [Abstract][Full Text] [Related]
6. [Altered expression of 15-hydroxyprostaglandin dehydrogenase in chronic rhinosinusitis with nasal polyps]. Chen S; Chen J; Chen J; Wang Y Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2023 Nov; 37(11):891-896. PubMed ID: 37905483 [No Abstract] [Full Text] [Related]
7. HMGB1-TLR4 signaling contributes to the secretion of interleukin 6 and interleukin 8 by nasal epithelial cells. Shimizu S; Kouzaki H; Kato T; Tojima I; Shimizu T Am J Rhinol Allergy; 2016 May; 30(3):167-72. PubMed ID: 27216346 [TBL] [Abstract][Full Text] [Related]
8. Cortactin expression in nasal polyps of Aspirin-Exacerbated Respiratory Disease (AERD) patients. Brescia G; Parrino D; Nicolè L; Zanotti C; Lanza C; Barion U; Marino F; Marioni G Am J Otolaryngol; 2018; 39(3):293-298. PubMed ID: 29534838 [TBL] [Abstract][Full Text] [Related]
9. Systemic prednisone administration selectively alters granulocyte subsets in nasal polyps from aspirin-exacerbated respiratory disease and chronic rhinosinusitis patients. Edward JA; Sanyal M; Ramakrishnan VR; Le W; Nguyen AL; Kingdom TT; Hwang PH; Nayak JV Int Forum Allergy Rhinol; 2013 Nov; 3(11):866-76. PubMed ID: 24106221 [TBL] [Abstract][Full Text] [Related]
10. Tissue factor and tissue factor pathway inhibitor in nasal mucosa and nasal secretions of chronic rhinosinusitis with nasal polyp. Shimizu S; Ogawa T; Takezawa K; Tojima I; Kouzaki H; Shimizu T Am J Rhinol Allergy; 2015; 29(4):235-42. PubMed ID: 26163243 [TBL] [Abstract][Full Text] [Related]
11. RAGE processing in chronic airway conditions: involvement of Staphylococcus aureus and ECP. Van Crombruggen K; Holtappels G; De Ruyck N; Derycke L; Tomassen P; Bachert C J Allergy Clin Immunol; 2012 Jun; 129(6):1515-21.e8. PubMed ID: 22460069 [TBL] [Abstract][Full Text] [Related]
12. Analysis of comorbidities and objective parameters in refractory chronic rhinosinusitis. Batra PS; Tong L; Citardi MJ Laryngoscope; 2013 Dec; 123 Suppl 7():S1-11. PubMed ID: 24122826 [TBL] [Abstract][Full Text] [Related]
13. Aquaporin expression profiles in normal sinonasal mucosa and chronic rhinosinusitis. Frauenfelder C; Woods C; Hussey D; Ooi E; Klebe S; Carney AS Int Forum Allergy Rhinol; 2014 Nov; 4(11):901-8. PubMed ID: 25243928 [TBL] [Abstract][Full Text] [Related]
14. Agonist of PPAR-γ Reduced Epithelial-Mesenchymal Transition in Eosinophilic Chronic Rhinosinusitis with Nasal Polyps via Inhibition of High Mobility Group Box1. Yang P; Chen S; Zhong G; Kong W; Wang Y Int J Med Sci; 2019; 16(12):1631-1641. PubMed ID: 31839751 [TBL] [Abstract][Full Text] [Related]
15. Correlation Between HMGB1 and TLR4 Expression in Sinonasal Mucosa in Patients With Chronic Rhinosinusitis. Taziki MH; Azarhoush R; Taziki MM; Naghavi-Alhosseini M; Javid N; Davoodi H Ear Nose Throat J; 2019 Dec; 98(10):599-605. PubMed ID: 31238737 [TBL] [Abstract][Full Text] [Related]
16. Chronic rhinosinusitis with nasal polyps is associated with decreased expression of mucosal interleukin 22 receptor. Ramanathan M; Spannhake EW; Lane AP Laryngoscope; 2007 Oct; 117(10):1839-43. PubMed ID: 17906500 [TBL] [Abstract][Full Text] [Related]
17. Chronic rhinosinusitis without nasal polyps is associated with increased expression of trefoil factor family peptides. Li P; Turner JH Int Forum Allergy Rhinol; 2014 Jul; 4(7):571-6. PubMed ID: 24733740 [TBL] [Abstract][Full Text] [Related]
18. HMGB1 and RAGE in skeletal muscle inflammation: Implications for protein accumulation in inclusion body myositis. Muth IE; Zschüntzsch J; Kleinschnitz K; Wrede A; Gerhardt E; Balcarek P; Schreiber-Katz O; Zierz S; Dalakas MC; Voll RE; Schmidt J Exp Neurol; 2015 Sep; 271():189-97. PubMed ID: 26048613 [TBL] [Abstract][Full Text] [Related]
19. Level of secreted HMGB1 correlates with severity of inflammation in chronic rhinosinusitis. Min HJ; Kim SJ; Kim TH; Chung HJ; Yoon JH; Kim CH Laryngoscope; 2015 Jul; 125(7):E225-30. PubMed ID: 25639490 [TBL] [Abstract][Full Text] [Related]
20. Clinical use of high mobility group box 1 and the receptor for advanced glycation end products in the prognosis and risk stratification of heart failure: a literature review. Marsh AM; Nguyen AH; Parker TM; Agrawal DK Can J Physiol Pharmacol; 2017 Mar; 95(3):253-259. PubMed ID: 28092162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]