These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25503643)

  • 1. Specific activation of operculum 3 (OP3) brain region during provoked tinnitus-related phantom auditory perceptions in humans.
    Job A; Jacob R; Pons Y; Raynal M; Kossowski M; Gauthier J; Lombard B; Delon-Martin C
    Brain Struct Funct; 2016 Mar; 221(2):913-22. PubMed ID: 25503643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Connectivity in Chronic Nonbothersome Tinnitus Following Acoustic Trauma: A Seed-Based Resting-State Functional Magnetic Resonance Imaging Study.
    Job A; Jaroszynski C; Kavounoudias A; Jaillard A; Delon-Martin C
    Brain Connect; 2020 Aug; 10(6):279-291. PubMed ID: 32458713
    [No Abstract]   [Full Text] [Related]  

  • 3. Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss.
    Boyen K; de Kleine E; van Dijk P; Langers DR
    Hear Res; 2014 Jun; 312():48-59. PubMed ID: 24631963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS).
    Issa M; Bisconti S; Kovelman I; Kileny P; Basura GJ
    Neural Plast; 2016; 2016():7453149. PubMed ID: 27042360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).
    San Juan J; Hu XS; Issa M; Bisconti S; Kovelman I; Kileny P; Basura G
    PLoS One; 2017; 12(6):e0179150. PubMed ID: 28604786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural activity underlying tinnitus generation: results from PET and fMRI.
    Lanting CP; de Kleine E; van Dijk P
    Hear Res; 2009 Sep; 255(1-2):1-13. PubMed ID: 19545617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: salicylate and acoustic trauma.
    Noreña AJ; Moffat G; Blanc JL; Pezard L; Cazals Y
    Neuroscience; 2010 Apr; 166(4):1194-209. PubMed ID: 20096752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional brain imaging of tinnitus-like perception induced by aversive auditory stimuli.
    Mirz F; Gjedde A; Sødkilde-Jrgensen H; Pedersen CB
    Neuroreport; 2000 Feb; 11(3):633-7. PubMed ID: 10718327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional brain changes in auditory phantom perception evoked by different stimulus frequencies.
    Hullfish J; Abenes I; Kovacs S; Sunaert S; De Ridder D; Vanneste S
    Neurosci Lett; 2018 Sep; 683():160-167. PubMed ID: 30075284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High frequency localised "hot spots" in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study.
    Ashton H; Reid K; Marsh R; Johnson I; Alter K; Griffiths T
    Neurosci Lett; 2007 Oct; 426(1):23-8. PubMed ID: 17888572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional imaging of unilateral tinnitus using fMRI.
    Lanting CP; De Kleine E; Bartels H; Van Dijk P
    Acta Otolaryngol; 2008 Apr; 128(4):415-21. PubMed ID: 18368576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus.
    Roberts LE; Bosnyak DJ; Bruce IC; Gander PE; Paul BT
    Hear Res; 2015 Sep; 327():9-27. PubMed ID: 25937134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus.
    Ahn MH; Hong SK; Min BK
    Hear Res; 2017 Dec; 356():63-73. PubMed ID: 29097049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the perceived sound of trauma-induced tinnitus in gerbils.
    Nowotny M; Remus M; Kössl M; Gaese BH
    J Acoust Soc Am; 2011 Nov; 130(5):2827-34. PubMed ID: 22087911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical Stimulation of the Ear, Head, Cranial Nerve, or Cortex for the Treatment of Tinnitus: A Scoping Review.
    Hoare DJ; Adjamian P; Sereda M
    Neural Plast; 2016; 2016():5130503. PubMed ID: 27403346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadened population-level frequency tuning in the auditory cortex of tinnitus patients.
    Sekiya K; Takahashi M; Murakami S; Kakigi R; Okamoto H
    J Neurophysiol; 2017 Mar; 117(3):1379-1384. PubMed ID: 28053240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Navigated rTMS for the treatment of tinnitus: a pilot study with assessment by fMRI and AEPs.
    Lefaucheur JP; Brugières P; Guimont F; Iglesias S; Franco-Rodrigues A; Liégeois-Chauvel C; Londero A
    Neurophysiol Clin; 2012 Apr; 42(3):95-109. PubMed ID: 22500699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tinnitus Correlates with Downregulation of Cortical Glutamate Decarboxylase 65 Expression But Not Auditory Cortical Map Reorganization.
    Miyakawa A; Wang W; Cho SJ; Li D; Yang S; Bao S
    J Neurosci; 2019 Dec; 39(50):9989-10001. PubMed ID: 31704784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation.
    Melcher JR; Sigalovsky IS; Guinan JJ; Levine RA
    J Neurophysiol; 2000 Feb; 83(2):1058-72. PubMed ID: 10669517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus.
    Wallhäusser-Franke E; Mahlke C; Oliva R; Braun S; Wenz G; Langner G
    Exp Brain Res; 2003 Dec; 153(4):649-54. PubMed ID: 14508632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.