These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25503688)

  • 1. BROMOC suite: Monte Carlo/Brownian dynamics suite for studies of ion permeation and DNA transport in biological and artificial pores with effective potentials.
    De Biase PM; Markosyan S; Noskov S
    J Comput Chem; 2015 Feb; 36(4):264-71. PubMed ID: 25503688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BROMOC-D: Brownian Dynamics/Monte-Carlo Program Suite to Study Ion and DNA Permeation in Nanopores.
    De Biase PM; Solano CJ; Markosyan S; Czapla L; Noskov SY
    J Chem Theory Comput; 2012 Jul; 8(7):2540-2551. PubMed ID: 22798730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BROMOCEA Code: An Improved Grand Canonical Monte Carlo/Brownian Dynamics Algorithm Including Explicit Atoms.
    Solano CJ; Pothula KR; Prajapati JD; De Biase PM; Noskov SY; Kleinekathöfer U
    J Chem Theory Comput; 2016 May; 12(5):2401-17. PubMed ID: 27088446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsecond simulations of DNA and ion transport in nanopores with novel ion-ion and ion-nucleotides effective potentials.
    De Biase PM; Markosyan S; Noskov S
    J Comput Chem; 2014 Apr; 35(9):711-21. PubMed ID: 24738152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore.
    Markosyan S; De Biase PM; Czapla L; Samoylova O; Singh G; Cuervo J; Tieleman DP; Noskov SY
    Nanoscale; 2014 Aug; 6(15):9006-16. PubMed ID: 24968858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic hierarchical coarse-graining with the inverse Monte Carlo method.
    Lyubartsev AP; Naômé A; Vercauteren DP; Laaksonen A
    J Chem Phys; 2015 Dec; 143(24):243120. PubMed ID: 26723605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels.
    Im W; Seefeld S; Roux B
    Biophys J; 2000 Aug; 79(2):788-801. PubMed ID: 10920012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling grand-canonical Monte Carlo: extending the flexibility of GROMACS through the GromPy python interface module.
    Pool R; Heringa J; Hoefling M; Schulz R; Smith JC; Feenstra KA
    J Comput Chem; 2012 May; 33(12):1207-14. PubMed ID: 22370965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores.
    Wells DB; Bhattacharya S; Carr R; Maffeo C; Ho A; Comer J; Aksimentiev A
    Methods Mol Biol; 2012; 870():165-86. PubMed ID: 22528264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling DNA in aqueous solutions: theoretical and computer simulation studies on the ion atmosphere of DNA.
    Jayaram B; Beyeridge DL
    Annu Rev Biophys Biomol Struct; 1996; 25():367-94. PubMed ID: 8800475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems.
    Chen JC; Kim AS
    Adv Colloid Interface Sci; 2004 Dec; 112(1-3):159-73. PubMed ID: 15581559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion Move Brownian Dynamics (IMBD)--simulations of ion transport.
    Kurczynska M; Kotulska M
    Acta Bioeng Biomech; 2014; 16(4):107-16. PubMed ID: 25597535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conformational dynamics of lambda-DNA in the anti-Brownian electrokinetic trap: Brownian dynamics and Monte Carlo simulation.
    Dambal A; Shaqfeh ES
    J Chem Phys; 2009 Dec; 131(22):224905. PubMed ID: 20001082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reservoir boundaries in Brownian dynamics simulations of ion channels.
    Corry B; Hoyles M; Allen TW; Walker M; Kuyucak S; Chung SH
    Biophys J; 2002 Apr; 82(4):1975-84. PubMed ID: 11916855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational analysis of binary segregation during colloidal crystallization with DNA-mediated interactions.
    Scarlett RT; Crocker JC; Sinno T
    J Chem Phys; 2010 Jun; 132(23):234705. PubMed ID: 20572732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spermine: an "invisible" component in the crystals of B-DNA. A grand canonical Monte Carlo and molecular dynamics simulation study.
    Korolev N; Lyubartsev AP; Nordenskiöld L; Laaksonen A
    J Mol Biol; 2001 May; 308(5):907-17. PubMed ID: 11352581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids.
    Sanz E; Marenduzzo D
    J Chem Phys; 2010 May; 132(19):194102. PubMed ID: 20499946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion-specific thermodynamics of multicomponent electrolytes: a hybrid HNC/MD approach.
    Vrbka L; Lund M; Kalcher I; Dzubiella J; Netz RR; Kunz W
    J Chem Phys; 2009 Oct; 131(15):154109. PubMed ID: 20568849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brownian dynamics simulations of ion transport through the VDAC.
    Lee KI; Rui H; Pastor RW; Im W
    Biophys J; 2011 Feb; 100(3):611-619. PubMed ID: 21281575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Monte Carlo Based Technique To Study DNA-Ligand Interactions.
    Cabeza de Vaca I; Lucas MF; Guallar V
    J Chem Theory Comput; 2015 Dec; 11(12):5598-605. PubMed ID: 26642982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.