These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25503929)

  • 1. Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene.
    Kharlamova MV; Sauer M; Saito T; Sato Y; Suenaga K; Pichler T; Shiozawa H
    Nanoscale; 2015 Jan; 7(4):1383-91. PubMed ID: 25503929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickelocene-Filled Purely Metallic Single-Walled Carbon Nanotubes: Sorting and Tuning the Electronic Properties.
    Kharlamova MV
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning of sorted double-walled carbon nanotubes by electrochemical charging.
    Kalbac M; Green AA; Hersam MC; Kavan L
    ACS Nano; 2010 Jan; 4(1):459-69. PubMed ID: 20050694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of KI encapsulation in single-walled carbon nanotubes by Raman and optical absorption spectroscopy.
    Ilie A; Bendall JS; Roy D; Philp E; Green ML
    J Phys Chem B; 2006 Jul; 110(28):13848-57. PubMed ID: 16836333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin transport properties of single metallocene molecules attached to single-walled carbon nanotubes via nickel adatoms.
    Wei P; Sun L; Benassi E; Shen Z; Sanvito S; Hou S
    J Chem Phys; 2011 Jun; 134(24):244704. PubMed ID: 21721654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the covalent linker groups on the spin transport properties of single nickelocene molecules attached to single-walled carbon nanotubes.
    Wei P; Sun L; Benassi E; Shen Z; Sanvito S; Hou S
    J Chem Phys; 2012 May; 136(19):194707. PubMed ID: 22612109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant cationic polyelectrolytes generated via electrochemical oxidation of single-walled carbon nanotubes.
    Hodge SA; Bayazit MK; Tay HH; Shaffer MS
    Nat Commun; 2013; 4():1989. PubMed ID: 23764646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation.
    Wei X; Wang MS; Bando Y; Golberg D
    J Am Chem Soc; 2010 Oct; 132(39):13592-3. PubMed ID: 20836492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics, Electronic Properties of Filled Carbon Nanotubes Investigated with Spectroscopy for Applications.
    Kharlamova MV
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes.
    Takenobu T; Takano T; Shiraishi M; Murakami Y; Ata M; Kataura H; Achiba Y; Iwasa Y
    Nat Mater; 2003 Oct; 2(10):683-8. PubMed ID: 12958593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge manipulation in molecules encapsulated inside single-wall carbon nanotubes.
    Yanagi K; Moriya R; Cuong NT; Otani M; Okada S
    Phys Rev Lett; 2013 Feb; 110(8):086801. PubMed ID: 23473183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-selective synthesis of in situ Ni-filled multi-walled carbon nanotubes using Ni(salen) as a catalyst source.
    Sengupta J; Jana A; Singh ND; Mitra C; Jacob C
    Nanotechnology; 2010 Oct; 21(41):415605. PubMed ID: 20852357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption.
    Shim M; Ozel T; Gaur A; Wang C
    J Am Chem Soc; 2006 Jun; 128(23):7522-30. PubMed ID: 16756307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions and chemical transformations of coronene inside and outside carbon nanotubes.
    Botka B; Füstös ME; Tóháti HM; Németh K; Klupp G; Szekrényes Z; Kocsis D; Utczás M; Székely E; Váczi T; Tarczay G; Hackl R; Chamberlain TW; Khlobystov AN; Kamarás K
    Small; 2014 Apr; 10(7):1369-78. PubMed ID: 24167020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-Dependent Growth of 36 Inner Nanotubes inside Nickelocene, Cobaltocene and Ferrocene-Filled Single-Walled Carbon Nanotubes.
    Kharlamova MV; Kramberger C
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface chemical functionalization of single walled carbon nanotubes with a bacteriorhodopsin mutant.
    Ingrosso C; Bianco GV; Lopalco P; Tamborra M; Curri ML; Corcelli A; Bruno G; Agostiano A; Siciliano P; Striccoli M
    Nanoscale; 2012 Oct; 4(20):6434-41. PubMed ID: 22961248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air-tolerant Fabrication and Enhanced Thermoelectric Performance of n-Type Single-walled Carbon Nanotubes Encapsulating 1,1'-Bis(diphenylphosphino)ferrocene.
    Nonoguchi Y; Iihara Y; Ohashi K; Murayama T; Kawai T
    Chem Asian J; 2016 Sep; 11(17):2423-7. PubMed ID: 27439731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and property characterization of c(69)n azafullerene encapsulated single-walled carbon nanotubes.
    Li Y; Kaneko T; Miyanaga S; Hatakeyama R
    ACS Nano; 2010 Jun; 4(6):3522-6. PubMed ID: 20509615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ Raman spectroelectrochemical study of 13C-labeled fullerene peapods and carbon nanotubes.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Small; 2007 Oct; 3(10):1746-52. PubMed ID: 17853497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.