BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25503956)

  • 1. Development and field testing of a miniaturized sampling system for simultaneous sampling of vapours and droplets.
    Breuer D; Dragan GC; Friedrich C; Möhlmann C; Zimmermann R
    Environ Sci Process Impacts; 2015 Feb; 17(2):278-87. PubMed ID: 25503956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of the "GGP" personal samplers under semi-volatile aerosols: sampling losses and their implication on occupational risk assessment.
    Dragan GC; Breuer D; Blaskowitz M; Karg E; Schnelle-Kreis J; Arteaga-Salas JM; Nordsieck H; Zimmermann R
    Environ Sci Process Impacts; 2015 Feb; 17(2):270-7. PubMed ID: 25345615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of vapour-aerosol mixtures.
    Breuer D
    J Environ Monit; 1999 Aug; 1(4):299-305. PubMed ID: 11529126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A headset-mounted mini sampler for measuring exposure to welding aerosol in the breathing zone.
    Lidén G; Surakka J
    Ann Occup Hyg; 2009 Mar; 53(2):99-116. PubMed ID: 19196747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of re-evaporated mass from loaded fibre-mist eliminators.
    Riss B; Wahlmüller E; Höflinger W
    J Environ Monit; 1999 Aug; 1(4):373-7. PubMed ID: 11529139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for the simultaneous collection of vapours and aerosols with emphasis on isocyanate sampling.
    Streicher RP; Kennedy ER; Lorberau CD
    Analyst; 1994 Jan; 119(1):89-97. PubMed ID: 8154600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusive sampling of C7-C16 hydrocarbons in workplace air: uptake rates, wall effects and use in oil mist measurements.
    Simpson AT; Wright MD
    Ann Occup Hyg; 2008 Jun; 52(4):249-57. PubMed ID: 18403405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sampling of respirable isocyanate particles.
    Gylestam D; Gustavsson M; Karlsson D; Dalene M; Skarping G
    Ann Occup Hyg; 2014 Apr; 58(3):340-54. PubMed ID: 24371044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonaceous Monolithic Multi-Channel Denuders as Vapour-Particle Partitioning Tools for the Occupational Sampling of Semi-Volatile Organic Compounds.
    Kohlmeier V; Dragan GC; Orasche J; Schnelle-Kreis J; Breuer D; Zimmermann R
    Ann Work Expo Health; 2018 Aug; 62(7):899-903. PubMed ID: 29897385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of drilling fluid systems and temperature on oil mist and vapour levels generated from shale shaker.
    Steinsvåg K; Galea KS; Krüger K; Peikli V; Sánchez-Jiménez A; Sætvedt E; Searl A; Cherrie JW; van Tongeren M
    Ann Occup Hyg; 2011 May; 55(4):347-56. PubMed ID: 21248050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Workplace aerosol mass concentration measurement using optical particle counters.
    Görner P; Simon X; Bémer D; Lidén G
    J Environ Monit; 2012 Feb; 14(2):420-8. PubMed ID: 22009365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of methods for the measurement of mist and vapor from light mineral oil-based metalworking fluids.
    Simpson AT
    Appl Occup Environ Hyg; 2003 Nov; 18(11):865-76. PubMed ID: 14555439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs).
    Gallego E; Roca FJ; Perales JF; Guardino X
    Talanta; 2010 May; 81(3):916-24. PubMed ID: 20298873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.
    Woolfenden E
    J Chromatogr A; 2010 Apr; 1217(16):2674-84. PubMed ID: 20106481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of sampling methods for measuring exposure to volatile inorganic acids in workplace air. Part 1: sampling hydrochloric acid (HCl) and nitric acid (HNO₃) from a test gas atmosphere.
    Howe A; Musgrove D; Breuer D; Gusbeth K; Moritz A; Demange M; Oury V; Rousset D; Dorotte M
    J Occup Environ Hyg; 2011 Aug; 8(8):492-502. PubMed ID: 21756139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of one-step hollow fiber supported liquid phase sampling technique for occupational workplace air analysis using high performance liquid chromatography with ultra-violet detector.
    Yan CT; Chien HY
    J Chromatogr A; 2012 Jul; 1246():145-9. PubMed ID: 22673811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of personal direct-reading dust monitors for the measurement of airborne inhalable dust.
    Thorpe A
    Ann Occup Hyg; 2007 Jan; 51(1):97-112. PubMed ID: 16799158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a method for the determination of naphthalene and phenanthrene in workplace air using diffusive sampling and thermal desorption GC-MS analysis.
    Lindahl R; Claesson AS; Khan MA; Levin JO
    Ann Occup Hyg; 2011 Jul; 55(6):681-7. PubMed ID: 21742628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.