BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25504216)

  • 1. Enhanced performance of dye-sensitized solar cells based on TiO2 nanotube membranes using an optimized annealing profile.
    Mohammadpour F; Moradi M; Lee K; Cha G; So S; Kahnt A; Guldi DM; Altomare M; Schmuki P
    Chem Commun (Camb); 2015 Jan; 51(9):1631-4. PubMed ID: 25504216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficiency dye-sensitized solar cells based on robust and both-end-open TiO2 nanotube membranes.
    Lin J; Chen J; Chen X
    Nanoscale Res Lett; 2011 Jul; 6(1):475. PubMed ID: 21794157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functions of self-assembled ultrafine TiO₂ nanocrystals for high efficient dye-sensitized solar cells.
    Xie F; Cherng SJ; Lu S; Chang YH; Sha WE; Feng SP; Chen CM; Choy WC
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5367-73. PubMed ID: 24665885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells.
    Lin J; Liu X; Guo M; Lu W; Zhang G; Zhou L; Chen X; Huang H
    Nanoscale; 2012 Aug; 4(16):5148-53. PubMed ID: 22797488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge transport improvement employing TiO2 nanotube arrays as front-side illuminated dye-sensitized solar cell photoanodes.
    Lamberti A; Sacco A; Bianco S; Manfredi D; Cappelluti F; Hernandez S; Quaglio M; Pirri CF
    Phys Chem Chem Phys; 2013 Feb; 15(7):2596-602. PubMed ID: 22918400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible, transferable, and thermal-durable dye-sensitized solar cell photoanode consisting of TiO₂ nanoparticles and electrospun TiO₂/SiO₂ nanofibers.
    Wang X; Xi M; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15925-32. PubMed ID: 25162500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of applied voltage on anodized TiO2 nanotube arrays and their performance on dye sensitized solar cells.
    Wang H; Li H; Wang J; Wu J; Liu M
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4183-8. PubMed ID: 23862470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of dye-sensitized solar cell based on the composite layer by anodic TiO2 nanotubes.
    Yang JH; Kim KH; Bark CW; Choi HW
    Nanoscale Res Lett; 2014; 9(1):671. PubMed ID: 25593557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells.
    Wang W; Zhang H; Wang R; Feng M; Chen Y
    Nanoscale; 2014 Feb; 6(4):2390-6. PubMed ID: 24435106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dye-sensitized TiO2 nanotube solar cells: rational structural and surface engineering on TiO2 nanotubes.
    Wang J; Lin Z
    Chem Asian J; 2012 Dec; 7(12):2754-62. PubMed ID: 22711337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast Flame Annealing of TiO
    Kim JK; Chai SU; Cho Y; Cai L; Kim SJ; Park S; Park JH; Zheng X
    Small; 2017 Nov; 13(42):. PubMed ID: 28940949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Diameter TiO
    Elzarka A; Liu N; Hwang I; Kamal M; Schmuki P
    Chemistry; 2017 Sep; 23(53):12995-12999. PubMed ID: 28704578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled free-standing polypyrrole nanotube membrane as an efficient FTO- and Pt-free counter electrode for dye-sensitized solar cells.
    Peng T; Sun W; Huang C; Yu W; Sebo B; Dai Z; Guo S; Zhao XZ
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):14-7. PubMed ID: 24341831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretically deposited TiO2 compact layers using aqueous suspension for dye-sensitized solar cells.
    Li X; Qiu Y; Wang S; Lu S; Gruar RI; Zhang X; Darr JA; He T
    Phys Chem Chem Phys; 2013 Sep; 15(35):14729-35. PubMed ID: 23903769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spherical TiO2 aggregates with different building units for dye-sensitized solar cells.
    Liu Z; Su X; Hou G; Bi S; Xiao Z; Jia H
    Nanoscale; 2013 Sep; 5(17):8177-83. PubMed ID: 23892684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance large-scale flexible dye-sensitized solar cells based on anodic TiO2 nanotube arrays.
    Jen HP; Lin MH; Li LL; Wu HP; Huang WK; Cheng PJ; Diau EW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10098-104. PubMed ID: 24050628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells.
    Yu H; Pan J; Bai Y; Zong X; Li X; Wang L
    Chemistry; 2013 Sep; 19(40):13569-74. PubMed ID: 23939704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved performance of dye-sensitized solar cells using gallium nitride-titanium dioxide composite photoelectrodes.
    Huang YR; Huang TW; Wang TH; Tsai YC
    J Colloid Interface Sci; 2014 Aug; 428():128-32. PubMed ID: 24910044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene-TiO2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique.
    Chen L; Zhou Y; Tu W; Li Z; Bao C; Dai H; Yu T; Liu J; Zou Z
    Nanoscale; 2013 Apr; 5(8):3481-5. PubMed ID: 23483083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.