BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 25504228)

  • 1. The molecular basis of myeloid malignancies.
    Kitamura T; Inoue D; Okochi-Watanabe N; Kato N; Komeno Y; Lu Y; Enomoto Y; Doki N; Uchida T; Kagiyama Y; Togami K; Kawabata KC; Nagase R; Horikawa S; Hayashi Y; Saika M; Fukuyama T; Izawa K; Oki T; Nakahara F; Kitaura J
    Proc Jpn Acad Ser B Phys Biol Sci; 2014; 90(10):389-404. PubMed ID: 25504228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel working hypothesis for pathogenesis of hematological malignancies: combination of mutations-induced cellular phenotypes determines the disease (cMIP-DD).
    Kitamura T; Watanabe-Okochi N; Enomoto Y; Nakahara F; Oki T; Komeno Y; Kato N; Doki N; Uchida T; Kagiyama Y; Togami K; Kawabata KC; Nishimura K; Hayashi Y; Nagase R; Saika M; Fukushima T; Asada S; Fujino T; Izawa Y; Horikawa S; Fukuyama T; Tanaka Y; Ono R; Goyama S; Nosaka T; Kitaura J; Inoue D
    J Biochem; 2016 Jan; 159(1):17-25. PubMed ID: 26590301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cohesin mutations in myeloid malignancies made simple.
    Viny AD; Levine RL
    Curr Opin Hematol; 2018 Mar; 25(2):61-66. PubMed ID: 29278534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations.
    Harada Y; Harada H
    J Cell Physiol; 2009 Jul; 220(1):16-20. PubMed ID: 19334039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic regulation by ASXL1 in myeloid malignancies.
    Yang FC; Agosto-Peña J
    Int J Hematol; 2023 Jun; 117(6):791-806. PubMed ID: 37062051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse.
    Sportoletti P; Grisendi S; Majid SM; Cheng K; Clohessy JG; Viale A; Teruya-Feldstein J; Pandolfi PP
    Blood; 2008 Apr; 111(7):3859-62. PubMed ID: 18212245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms that produce secondary MDS/AML by RUNX1/AML1 point mutations.
    Harada Y; Harada H
    J Cell Biochem; 2011 Feb; 112(2):425-32. PubMed ID: 21268063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and epigenetic pathways in myelodysplastic syndromes: A brief overview.
    Jhanwar SC
    Adv Biol Regul; 2015 May; 58():28-37. PubMed ID: 25499150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations of myelodysplastic syndromes (MDS): An update.
    Ganguly BB; Kadam NN
    Mutat Res Rev Mutat Res; 2016; 769():47-62. PubMed ID: 27543316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms underlying the heterogeneity of myelodysplastic syndromes.
    Dussiau C; Fontenay M
    Exp Hematol; 2018 Feb; 58():17-26. PubMed ID: 29175473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of microRNA involvement in genesis of myelodysplastic syndrome and its transformation to acute myeloid leukemia.
    Liao R; Xu Y; Chen M; Chen X; Zhan X; Sun J
    Hematology; 2013 Jul; 18(4):191-7. PubMed ID: 23321417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted Next-Generation Sequencing in Myelodysplastic Syndrome and Chronic Myelomonocytic Leukemia Aids Diagnosis in Challenging Cases and Identifies Frequent Spliceosome Mutations in Transformed Acute Myeloid Leukemia.
    Reinig E; Yang F; Traer E; Arora R; Brown S; Rattray R; Braziel R; Fan G; Press R; Dunlap J
    Am J Clin Pathol; 2016 Apr; 145(4):497-506. PubMed ID: 27124934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: relationships and distinctions-a review.
    Bernasconi P
    Br J Haematol; 2008 Sep; 142(5):695-708. PubMed ID: 18540941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical validation and performance characteristics of a 48-gene next-generation sequencing panel for detecting potentially actionable genomic alterations in myeloid neoplasms.
    Rosenthal SH; Gerasimova A; Ma C; Li HR; Grupe A; Chong H; Acab A; Smolgovsky A; Owen R; Elzinga C; Chen R; Sugganth D; Freitas T; Graham J; Champion K; Bhattacharya A; Racke F; Lacbawan F
    PLoS One; 2021; 16(4):e0243683. PubMed ID: 33909614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations.
    Niimi H; Harada H; Harada Y; Ding Y; Imagawa J; Inaba T; Kyo T; Kimura A
    Leukemia; 2006 Apr; 20(4):635-44. PubMed ID: 16467864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AML1/RUNX1 mutations are infrequent, but related to AML-M0, acquired trisomy 21, and leukemic transformation in pediatric hematologic malignancies.
    Taketani T; Taki T; Takita J; Tsuchida M; Hanada R; Hongo T; Kaneko T; Manabe A; Ida K; Hayashi Y
    Genes Chromosomes Cancer; 2003 Sep; 38(1):1-7. PubMed ID: 12874780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Pathophysiology of hematological malignancies associated with ASXL1 mutations].
    Fujino T
    Rinsho Ketsueki; 2022; 63(6):561-572. PubMed ID: 35831189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Next-generation sequencing and its application in acute myeloid leukemia and myelodysplastic syndrome].
    Gu SC; Chang CK
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Dec; 19(6):1545-9. PubMed ID: 22169322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic pathways in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia.
    Pedersen-Bjergaard J; Andersen MT; Andersen MK
    Hematology Am Soc Hematol Educ Program; 2007; ():392-7. PubMed ID: 18024656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular genetics of MDS/MPN overlap syndromes.
    Hunter AM; Padron E
    Best Pract Res Clin Haematol; 2020 Sep; 33(3):101195. PubMed ID: 33038984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.