BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25504230)

  • 1. Feasibility studies towards future self-sufficient supply of the (99)Mo-(99m)Tc isotopes with Japanese accelerators.
    Nakai K; Takahashi N; Hatazawa J; Shinohara A; Hayashi Y; Ikeda H; Kanai Y; Watabe T; Fukuda M; Hatanaka K
    Proc Jpn Acad Ser B Phys Biol Sci; 2014; 90(10):413-21. PubMed ID: 25504230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of Multi-Curie Production of (99m)Tc by Conventional Medical Cyclotrons.
    Bénard F; Buckley KR; Ruth TJ; Zeisler SK; Klug J; Hanemaayer V; Vuckovic M; Hou X; Celler A; Appiah JP; Valliant J; Kovacs MS; Schaffer P
    J Nucl Med; 2014 Jun; 55(6):1017-22. PubMed ID: 24722529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 14 MeV Neutrons for
    Capogni M; Pietropaolo A; Quintieri L; Angelone M; Boschi A; Capone M; Cherubini N; De Felice P; Dodaro A; Duatti A; Fazio A; Loreti S; Martini P; Pagano G; Pasquali M; Pillon M; Uccelli L; Pizzuto A
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30060449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclotron production of (99m)Tc: experimental measurement of the (100)Mo(p,x)(99)Mo, (99m)Tc and (99g)Tc excitation functions from 8 to 18 MeV.
    Gagnon K; Bénard F; Kovacs M; Ruth TJ; Schaffer P; Wilson JS; McQuarrie SA
    Nucl Med Biol; 2011 Aug; 38(6):907-16. PubMed ID: 21843787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of radionuclidic impurities in cyclotron produced (99m)Tc.
    Lebeda O; van Lier EJ; Štursa J; Ráliš J; Zyuzin A
    Nucl Med Biol; 2012 Nov; 39(8):1286-91. PubMed ID: 22796396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclotron production of
    Gumiela M
    Nucl Med Biol; 2018 Mar; 58():33-41. PubMed ID: 29331921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained availability of 99mTc: possible paths forward.
    Pillai MR; Dash A; Knapp FF
    J Nucl Med; 2013 Feb; 54(2):313-23. PubMed ID: 23255729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal radiation dose assessment of radiopharmaceuticals prepared with cyclotron-produced
    Meléndez-Alafort L; Ferro-Flores G; De Nardo L; Bello M; Paiusco M; Negri A; Zorz A; Uzunov N; Esposito J; Rosato A
    Med Phys; 2019 Mar; 46(3):1437-1446. PubMed ID: 30661241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radioisotopic purity and imaging properties of cyclotron-produced
    Uzunov NM; Melendez-Alafort L; Bello M; Cicoria G; Zagni F; De Nardo L; Selva A; Mou L; Rossi-Alvarez C; Pupillo G; Di Domenico G; Uccelli L; Boschi A; Groppi F; Salvini A; Taibi A; Duatti A; Martini P; Pasquali M; Loriggiola M; Marengo M; Strada L; Manenti S; Rosato A; Esposito J
    Phys Med Biol; 2018 Sep; 63(18):185021. PubMed ID: 30229740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent achievements in Tc-99m radiopharmaceutical direct production by medical cyclotrons.
    Boschi A; Martini P; Pasquali M; Uccelli L
    Drug Dev Ind Pharm; 2017 Sep; 43(9):1402-1412. PubMed ID: 28443689
    [No Abstract]   [Full Text] [Related]  

  • 11. Quantitative analysis of relationships between irradiation parameters and the reproducibility of cyclotron-produced (99m)Tc yields.
    Tanguay J; Hou X; Buckley K; Schaffer P; Bénard F; Ruth TJ; Celler A
    Phys Med Biol; 2015 May; 60(10):3883-903. PubMed ID: 25909462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical modeling of yields for proton-induced reactions on natural and enriched molybdenum targets.
    Celler A; Hou X; Bénard F; Ruth T
    Phys Med Biol; 2011 Sep; 56(17):5469-84. PubMed ID: 21813960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of radioactive waste generated during the cyclotron production of
    Stothers LA; Hou X; Vuckovic M; Buckley K; Bénard F; Schaffer P; Celler A
    Phys Med Biol; 2019 Feb; 64(5):055008. PubMed ID: 30669132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of rat SPECT images obtained using (99m)Tc derived from 99Mo produced by an electron accelerator with that from a reactor.
    Galea R; Wells RG; Ross CK; Lockwood J; Moore K; Harvey JT; Isensee GH
    Phys Med Biol; 2013 May; 58(9):2737-50. PubMed ID: 23552053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative production methods to face global molybdenum-99 supply shortage.
    Lyra M; Charalambatou P; Roussou E; Fytros S; Baka I
    Hell J Nucl Med; 2011; 14(1):49-55. PubMed ID: 21512666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclotron Production of (99m)Tc using (100)Mo2C targets.
    Richards VN; Mebrahtu E; Lapi SE
    Nucl Med Biol; 2013 Oct; 40(7):939-45. PubMed ID: 23890695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fission-Produced
    Youker AJ; Chemerisov SD; Tkac P; Kalensky M; Heltemes TA; Rotsch DA; Vandegrift GF; Krebs JF; Makarashvili V; Stepinski DC
    J Nucl Med; 2017 Mar; 58(3):514-517. PubMed ID: 27688474
    [No Abstract]   [Full Text] [Related]  

  • 18. Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates.
    Hou X; Tanguay J; Buckley K; Schaffer P; Bénard F; Ruth TJ; Celler A
    Phys Med Biol; 2016 Jan; 61(2):542-53. PubMed ID: 26683410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovative Target for Production of Technetium-99m by Biomedical Cyclotron.
    Skliarova H; Cisternino S; Cicoria G; Marengo M; Palmieri V
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30577612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversification of 99Mo/99mTc separation: non–fission reactor production of 99Mo as a strategy for enhancing 99mTc availability.
    Pillai MR; Dash A; Knapp FF
    J Nucl Med; 2015 Jan; 56(1):159-61. PubMed ID: 25537991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.