BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 25504495)

  • 1. Specific light-up bioprobe with aggregation-induced emission and activatable photoactivity for the targeted and image-guided photodynamic ablation of cancer cells.
    Yuan Y; Zhang CJ; Gao M; Zhang R; Tang BZ; Liu B
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1780-6. PubMed ID: 25504495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular Dual Fluorescent Lightup Bioprobes for Image-Guided Photodynamic Cancer Therapy.
    Han H; Jin Q; Wang H; Teng W; Wu J; Tong H; Chen T; Ji J
    Small; 2016 Jul; 12(28):3870-8. PubMed ID: 27322139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-targeted activatable photosensitizers with aggregation-induced emission (AIE) characteristics for image-guided photodynamic cancer cell ablation.
    Yuan Y; Xu S; Zhang CJ; Zhang R; Liu B
    J Mater Chem B; 2016 Jan; 4(1):169-176. PubMed ID: 32262821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AIE material for photodynamic therapy.
    Saini V; Venkatesh V
    Prog Mol Biol Transl Sci; 2021; 185():45-73. PubMed ID: 34782107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted bioimaging and photodynamic therapy of cancer cells with an activatable red fluorescent bioprobe.
    Hu F; Huang Y; Zhang G; Zhao R; Yang H; Zhang D
    Anal Chem; 2014 Aug; 86(15):7987-95. PubMed ID: 25002157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress and trends of photodynamic therapy: From traditional photosensitizers to AIE-based photosensitizers.
    Wang S; Wang X; Yu L; Sun M
    Photodiagnosis Photodyn Ther; 2021 Jun; 34():102254. PubMed ID: 33713845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications.
    Hu F; Xu S; Liu B
    Adv Mater; 2018 Nov; 30(45):e1801350. PubMed ID: 30066341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Efficient Near-Infrared Photosensitizers with Aggregation-Induced Emission Characteristics: Rational Molecular Design and Photodynamic Cancer Cell Ablation.
    Chen D; Long Z; Zhong C; Chen L; Dang Y; Hu JJ; Lou X; Xia F
    ACS Appl Bio Mater; 2021 Jun; 4(6):5231-5239. PubMed ID: 35007005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Formulation of Targeted Aggregation-Induced Emission Dots for Image-Guided Photodynamic Therapy of Cholangiocarcinoma.
    Li M; Gao Y; Yuan Y; Wu Y; Song Z; Tang BZ; Liu B; Zheng QC
    ACS Nano; 2017 Apr; 11(4):3922-3932. PubMed ID: 28383899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular and Mitochondrial Dual-Targeted Organic Dots with Aggregation-Induced Emission Characteristics for Image-Guided Photodynamic Therapy.
    Feng G; Qin W; Hu Q; Tang BZ; Liu B
    Adv Healthc Mater; 2015 Dec; 4(17):2667-76. PubMed ID: 26479020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Alkaline Phosphatase-Responsive Aggregation-Induced Emission Photosensitizer for Selective Imaging and Photodynamic Therapy of Cancer Cells.
    Lam KWK; Chau JHC; Yu EY; Sun F; Lam JWY; Ding D; Kwok RTK; Sun J; He X; Tang BZ
    ACS Nano; 2023 Apr; 17(8):7145-7156. PubMed ID: 37067178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical.
    Meng Z; Xue H; Wang T; Chen B; Dong X; Yang L; Dai J; Lou X; Xia F
    J Nanobiotechnology; 2022 Jul; 20(1):344. PubMed ID: 35883086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cucurbit[8]uril Regulated Activatable Supramolecular Photosensitizer for Targeted Cancer Imaging and Photodynamic Therapy.
    Wang XQ; Lei Q; Zhu JY; Wang WJ; Cheng Q; Gao F; Sun YX; Zhang XZ
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22892-9. PubMed ID: 27513690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia-Responsive Photosensitizer Targeting Dual Organelles for Photodynamic Therapy of Tumors.
    Tang Y; Wang X; Zhu G; Liu Z; Chen XM; Bisoyi HK; Chen X; Chen X; Xu Y; Li J; Li Q
    Small; 2023 Jan; 19(1):e2205440. PubMed ID: 36285777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer-Cell-Activated Photodynamic Therapy Assisted by Cu(II)-Based Metal-Organic Framework.
    Wang Y; Wu W; Liu J; Manghnani PN; Hu F; Ma D; Teh C; Wang B; Liu B
    ACS Nano; 2019 Jun; 13(6):6879-6890. PubMed ID: 31194910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and structural regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application.
    Jia S; Yuan H; Hu R
    Biomater Sci; 2022 Aug; 10(16):4443-4457. PubMed ID: 35789348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted and image-guided photodynamic cancer therapy based on organic nanoparticles with aggregation-induced emission characteristics.
    Yuan Y; Feng G; Qin W; Tang BZ; Liu B
    Chem Commun (Camb); 2014 Aug; 50(63):8757-60. PubMed ID: 24967727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Activatable Organic Photosensitizers for Specific Photodynamic Therapy.
    Liu M; Li C
    Chempluschem; 2020 May; 85(5):948-957. PubMed ID: 32401421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Light-Up Probe with Aggregation-Induced Emission for Real-Time Bio-orthogonal Tumor Labeling and Image-Guided Photodynamic Therapy.
    Hu F; Mao D; Kenry ; Cai X; Wu W; Kong D; Liu B
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10182-10186. PubMed ID: 29959849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Specific Light-Up Sensing of Transferrin Receptor: Image-Guided Photodynamic Ablation of Cancer Cells through Controlled Cytomembrane Disintegration.
    Zhang R; Feng G; Zhang CJ; Cai X; Cheng X; Liu B
    Anal Chem; 2016 May; 88(9):4841-8. PubMed ID: 27049534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.