BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 25504495)

  • 41. Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics.
    Hu Q; Gao M; Feng G; Liu B
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14225-9. PubMed ID: 25318447
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification and ultrastructural imaging of photodynamic therapy-induced microfilaments by atomic force microscopy.
    Jung SH; Park JY; Yoo JO; Shin I; Kim YM; Ha KS
    Ultramicroscopy; 2009 Nov; 109(12):1428-34. PubMed ID: 19665305
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A multifunctional probe with aggregation-induced emission characteristics for selective fluorescence imaging and photodynamic killing of bacteria over mammalian cells.
    Gao M; Hu Q; Feng G; Tomczak N; Liu R; Xing B; Tang BZ; Liu B
    Adv Healthc Mater; 2015 Apr; 4(5):659-63. PubMed ID: 25530179
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activity-Based Photosensitizers with Optimized Triplet State Characteristics Toward Cancer Cell Selective and Image Guided Photodynamic Therapy.
    Kilic E; Elmazoglu Z; Almammadov T; Kepil D; Etienne T; Marion A; Gunbas G; Kolemen S
    ACS Appl Bio Mater; 2022 Jun; 5(6):2754-2767. PubMed ID: 35537187
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells.
    Liu K; Liu X; Zeng Q; Zhang Y; Tu L; Liu T; Kong X; Wang Y; Cao F; Lambrechts SA; Aalders MC; Zhang H
    ACS Nano; 2012 May; 6(5):4054-62. PubMed ID: 22463487
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tumor-targeted photodynamic therapy.
    Shirasu N; Nam SO; Kuroki M
    Anticancer Res; 2013 Jul; 33(7):2823-31. PubMed ID: 23780966
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells.
    Liu Q; Xu L; Zhang X; Li N; Zheng J; Guan M; Fang X; Wang C; Shu C
    Chem Asian J; 2013 Oct; 8(10):2370-6. PubMed ID: 23907978
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular Engineering of High-Performance Aggregation-Induced Emission Photosensitizers to Boost Cancer Theranostics Mediated by Acid-Triggered Nucleus-Targeted Nanovectors.
    Zhang Z; Xu W; Xiao P; Kang M; Yan D; Wen H; Song N; Wang D; Tang BZ
    ACS Nano; 2021 Jun; 15(6):10689-10699. PubMed ID: 34077187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of pH sensitive 2-(diisopropylamino)ethyl methacrylate based nanoparticles for photodynamic therapy.
    Peng CL; Yang LY; Luo TY; Lai PS; Yang SJ; Lin WJ; Shieh MJ
    Nanotechnology; 2010 Apr; 21(15):155103. PubMed ID: 20332561
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Smart Probe for Tracing Cancer Therapy: Selective Cancer Cell Detection, Image-Guided Ablation, and Prediction of Therapeutic Response In Situ.
    Yuan Y; Kwok RT; Tang BZ; Liu B
    Small; 2015 Sep; 11(36):4682-90. PubMed ID: 26113312
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dissecting Exciton Dynamics in pH-Activatable Long-Wavelength Photosensitizers for Traceable Photodynamic Therapy.
    Liu Y; Zhang J; Zhou X; Wang Y; Lei S; Feng G; Wang D; Huang P; Lin J
    Angew Chem Int Ed Engl; 2024 Jun; ():e202408064. PubMed ID: 38853147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells.
    Gollavelli G; Ling YC
    Biomaterials; 2014 May; 35(15):4499-507. PubMed ID: 24602568
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer.
    Tian J; Ding L; Xu HJ; Shen Z; Ju H; Jia L; Bao L; Yu JS
    J Am Chem Soc; 2013 Dec; 135(50):18850-8. PubMed ID: 24294991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polymeric micelle nanoparticles for photodynamic treatment of head and neck cancer cells.
    Cohen EM; Ding H; Kessinger CW; Khemtong C; Gao J; Sumer BD
    Otolaryngol Head Neck Surg; 2010 Jul; 143(1):109-15. PubMed ID: 20620628
    [TBL] [Abstract][Full Text] [Related]  

  • 55. All-in-One Alkaline Phosphatase-Response Aggregation-Induced Emission Probe for Cancer Discriminative Imaging and Combinational Chemodynamic-Photodynamic Therapy.
    Xiong LH; Yang L; Geng J; Tang BZ; He X
    ACS Nano; 2024 Jun; ():. PubMed ID: 38938113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HClO-Activated Fluorescence and Photosensitization from an AIE Nanoprobe for Image-Guided Bacterial Ablation in Phagocytes.
    Wu M; Wu W; Duan Y; Liu X; Wang M; Phan CU; Qi G; Tang G; Liu B
    Adv Mater; 2020 Nov; 32(47):e2005222. PubMed ID: 33079417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy.
    Liang X; Li X; Jing L; Yue X; Dai Z
    Biomaterials; 2014 Aug; 35(24):6379-88. PubMed ID: 24818886
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system.
    Lee SJ; Koo H; Lee DE; Min S; Lee S; Chen X; Choi Y; Leary JF; Park K; Jeong SY; Kwon IC; Kim K; Choi K
    Biomaterials; 2011 Jun; 32(16):4021-9. PubMed ID: 21376388
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aggregation-Induced Emission Nanoparticles Encapsulated with PEGylated Nano Graphene Oxide and Their Applications in Two-Photon Fluorescence Bioimaging and Photodynamic Therapy in Vitro and in Vivo.
    Sun X; Zebibula A; Dong X; Zhang G; Zhang D; Qian J; He S
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25037-25046. PubMed ID: 29979575
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photosensitizer-doped conjugated polymer nanoparticles for simultaneous two-photon imaging and two-photon photodynamic therapy in living cells.
    Shen X; Li L; Wu H; Yao SQ; Xu QH
    Nanoscale; 2011 Dec; 3(12):5140-6. PubMed ID: 22038039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.