BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 25504520)

  • 1. Genetic and phenotypic intra-species variation in Candida albicans.
    Hirakawa MP; Martinez DA; Sakthikumar S; Anderson MZ; Berlin A; Gujja S; Zeng Q; Zisson E; Wang JM; Greenberg JM; Berman J; Bennett RJ; Cuomo CA
    Genome Res; 2015 Mar; 25(3):413-25. PubMed ID: 25504520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Genome of the Human Pathogen
    Wang JM; Bennett RJ; Anderson MZ
    mBio; 2018 Sep; 9(5):. PubMed ID: 30228236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen.
    Ene IV; Farrer RA; Hirakawa MP; Agwamba K; Cuomo CA; Bennett RJ
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):E8688-E8697. PubMed ID: 30150418
    [No Abstract]   [Full Text] [Related]  

  • 4. Rapid Phenotypic and Genotypic Diversification After Exposure to the Oral Host Niche in
    Forche A; Cromie G; Gerstein AC; Solis NV; Pisithkul T; Srifa W; Jeffery E; Abbey D; Filler SG; Dudley AM; Berman J
    Genetics; 2018 Jul; 209(3):725-741. PubMed ID: 29724862
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular epidemiology, phylogeny and evolution of Candida albicans.
    McManus BA; Coleman DC
    Infect Genet Evol; 2014 Jan; 21():166-78. PubMed ID: 24269341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of drug resistance in clinical isolates of Candida albicans.
    Ford CB; Funt JM; Abbey D; Issi L; Guiducci C; Martinez DA; Delorey T; Li BY; White TC; Cuomo C; Rao RP; Berman J; Thompson DA; Regev A
    Elife; 2015 Feb; 4():e00662. PubMed ID: 25646566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parasexual Ploidy Reduction Drives Population Heterogeneity Through Random and Transient Aneuploidy in Candida albicans.
    Hickman MA; Paulson C; Dudley A; Berman J
    Genetics; 2015 Jul; 200(3):781-94. PubMed ID: 25991822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraspecies Transcriptional Profiling Reveals Key Regulators of Candida albicans Pathogenic Traits.
    Wang JM; Woodruff AL; Dunn MJ; Fillinger RJ; Bennett RJ; Anderson MZ
    mBio; 2021 Apr; 12(2):. PubMed ID: 33879584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans.
    Diogo D; Bouchier C; d'Enfert C; Bougnoux ME
    Fungal Genet Biol; 2009 Feb; 46(2):159-68. PubMed ID: 19059493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host-Induced Genome Instability Rapidly Generates Phenotypic Variation across Candida albicans Strains and Ploidy States.
    Smith AC; Hickman MA
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32493724
    [No Abstract]   [Full Text] [Related]  

  • 11. Evolution in Candida albicans populations during a single passage through a mouse host.
    Forche A; Magee PT; Selmecki A; Berman J; May G
    Genetics; 2009 Jul; 182(3):799-811. PubMed ID: 19414562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Variation in Clinical Isolates of Candida albicans Modulates Neutrophil Responses.
    Shankar M; Lo TL; Traven A
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32817378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fitness costs and benefits of trisomy of each Candida albicans chromosome.
    Yang F; Todd RT; Selmecki A; Jiang YY; Cao YB; Berman J
    Genetics; 2021 Jun; 218(2):. PubMed ID: 33837402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates.
    Coste A; Selmecki A; Forche A; Diogo D; Bougnoux ME; d'Enfert C; Berman J; Sanglard D
    Eukaryot Cell; 2007 Oct; 6(10):1889-904. PubMed ID: 17693596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence variations and protein expression levels of the two immune evasion proteins Gpm1 and Pra1 influence virulence of clinical Candida albicans isolates.
    Luo S; Hipler UC; Münzberg C; Skerka C; Zipfel PF
    PLoS One; 2015; 10(2):e0113192. PubMed ID: 25692293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Recessive Lethal Alleles in the Diploid Genome of a Candida albicans Laboratory Strain Unveils a Potential Role of Repetitive Sequences in Buffering Their Deleterious Impact.
    Marton T; Feri A; Commere PH; Maufrais C; d'Enfert C; Legrand M
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection.
    Forche A; May G; Magee PT
    Eukaryot Cell; 2005 Jan; 4(1):156-65. PubMed ID: 15643071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of genome evolution in Candida albicans.
    Ene IV; Bennett RJ; Anderson MZ
    Curr Opin Microbiol; 2019 Dec; 52():47-54. PubMed ID: 31176092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term exposure to fluconazole induces chromosome loss in Candida albicans: an approach to produce haploid cells.
    Chang FM; Ou TY; Cheng WN; Chou ML; Lee KC; Chin YP; Lin CP; Chang KD; Lin CT; Su CH
    Fungal Genet Biol; 2014 Sep; 70():68-76. PubMed ID: 25038494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies.
    Legrand M; Forche A; Selmecki A; Chan C; Kirkpatrick DT; Berman J
    PLoS Genet; 2008 Jan; 4(1):e1. PubMed ID: 18179283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.