These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 25504590)

  • 1. Biological components and bioelectronic interfaces of water splitting photoelectrodes for solar hydrogen production.
    Braun A; Boudoire F; Bora DK; Faccio G; Hu Y; Kroll A; Mun BS; Wilson ST
    Chemistry; 2015 Mar; 21(11):4188-99. PubMed ID: 25504590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron based photoanodes for solar fuel production.
    Bassi PS; Gurudayal ; Wong LH; Barber J
    Phys Chem Chem Phys; 2014 Jun; 16(24):11834-42. PubMed ID: 24469680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells.
    Ihssen J; Braun A; Faccio G; Gajda-Schrantz K; Thöny-Meyer L
    Curr Protein Pept Sci; 2014; 15(4):374-84. PubMed ID: 24678669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts.
    Wang W; Chen J; Li C; Tian W
    Nat Commun; 2014 Aug; 5():4647. PubMed ID: 25115942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unassisted Photoelectrochemical Cell with Multimediator Modulation for Solar Water Splitting Exceeding 4% Solar-to-Hydrogen Efficiency.
    Ye S; Shi W; Liu Y; Li D; Yin H; Chi H; Luo Y; Ta N; Fan F; Wang X; Li C
    J Am Chem Soc; 2021 Aug; 143(32):12499-12508. PubMed ID: 34343431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting.
    Dos Santos WS; Rodriguez M; Khoury JMO; Nascimento LA; Ribeiro RJP; Mesquita JP; Silva AC; Nogueira FGE; Pereira MC
    ChemSusChem; 2018 Feb; 11(3):589-597. PubMed ID: 29193761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthesis as a power supply for (bio-)hydrogen production.
    Esper B; Badura A; Rögner M
    Trends Plant Sci; 2006 Nov; 11(11):543-9. PubMed ID: 17029931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research.
    Seitz LC; Chen Z; Forman AJ; Pinaud BA; Benck JD; Jaramillo TF
    ChemSusChem; 2014 May; 7(5):1372-85. PubMed ID: 24692256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid bio-photo-electro-chemical cells for solar water splitting.
    Pinhassi RI; Kallmann D; Saper G; Dotan H; Linkov A; Kay A; Liveanu V; Schuster G; Adir N; Rothschild A
    Nat Commun; 2016 Aug; 7():12552. PubMed ID: 27550091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting.
    Wang S; Liu G; Wang L
    Chem Rev; 2019 Apr; 119(8):5192-5247. PubMed ID: 30875200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical hydrogen production from biomass derivatives and water.
    Lu X; Xie S; Yang H; Tong Y; Ji H
    Chem Soc Rev; 2014 Nov; 43(22):7581-93. PubMed ID: 24599050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of reaction center mimics to systems capable of generating solar fuel.
    Sherman BD; Vaughn MD; Bergkamp JJ; Gust D; Moore AL; Moore TA
    Photosynth Res; 2014 May; 120(1-2):59-70. PubMed ID: 23397434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting.
    Zhou J; Cheng H; Cheng J; Wang L; Xu H
    Small Methods; 2024 Feb; 8(2):e2300418. PubMed ID: 37421184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite.
    Mayer MT; Lin Y; Yuan G; Wang D
    Acc Chem Res; 2013 Jul; 46(7):1558-66. PubMed ID: 23425045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.