These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 25504613)

  • 41. Protein mass spectra data analysis for clinical biomarker discovery: a global review.
    Roy P; Truntzer C; Maucort-Boulch D; Jouve T; Molinari N
    Brief Bioinform; 2011 Mar; 12(2):176-86. PubMed ID: 20534688
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CE-MS-based proteomics in biomarker discovery and clinical application.
    Pontillo C; Filip S; Borràs DM; Mullen W; Vlahou A; Mischak H
    Proteomics Clin Appl; 2015 Apr; 9(3-4):322-34. PubMed ID: 25641774
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Processing strategies and software solutions for data-independent acquisition in mass spectrometry.
    Bilbao A; Varesio E; Luban J; Strambio-De-Castillia C; Hopfgartner G; Müller M; Lisacek F
    Proteomics; 2015 Mar; 15(5-6):964-80. PubMed ID: 25430050
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antibody-based proteomics and biomarker research - current status and limitations.
    Solier C; Langen H
    Proteomics; 2014 Mar; 14(6):774-83. PubMed ID: 24520068
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combining label-free and label-based accurate quantifications with SWATH-MS: Comparison with SRM and PRM for the evaluation of bovine muscle type effects.
    Bons J; Husson G; Chion M; Bonnet M; Maumy-Bertrand M; Delalande F; Cianférani S; Bertrand F; Picard B; Carapito C
    Proteomics; 2021 May; 21(10):e2000214. PubMed ID: 33733615
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Toward an integrated pipeline for protein biomarker development.
    Drabovich AP; Martínez-Morillo E; Diamandis EP
    Biochim Biophys Acta; 2015 Jun; 1854(6):677-86. PubMed ID: 25218201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automated Proteomics Workflows for High-Throughput Library Generation and Biomarker Detection Using Data-Independent Acquisition.
    Paramasivan S; Morrison JL; Lock MC; Darby JRT; Barrero RA; Mills PC; Sadowski P
    J Proteome Res; 2023 Jun; 22(6):2018-2029. PubMed ID: 37219895
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SWATH acquisition mode for drug metabolism and metabolomics investigations.
    Bonner R; Hopfgartner G
    Bioanalysis; 2016 Aug; 8(16):1735-50. PubMed ID: 27460983
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prospective applications of ultrahigh resolution proteomics in clinical mass spectrometry.
    Ruhaak LR; van der Burgt YE; Cobbaert CM
    Expert Rev Proteomics; 2016 Dec; 13(12):1063-1071. PubMed ID: 27798968
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology.
    Krasny L; Huang PH
    Mol Omics; 2021 Feb; 17(1):29-42. PubMed ID: 33034323
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Clinical veterinary proteomics: Techniques and approaches to decipher the animal plasma proteome.
    Ghodasara P; Sadowski P; Satake N; Kopp S; Mills PC
    Vet J; 2017 Dec; 230():6-12. PubMed ID: 29208216
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Is label-free LC-MS/MS ready for biomarker discovery?
    Sandin M; Chawade A; Levander F
    Proteomics Clin Appl; 2015 Apr; 9(3-4):289-94. PubMed ID: 25656266
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of Peptide Biomarkers for Discrimination of Shrimp Species through SWATH-MS-Based Proteomics and Chemometrics.
    Hu L; Zhang H; Zhang X; Zhang T; Chang Y; Zhao X; Xu J; Xue Y; Li Z; Wang Y; Xue C
    J Agric Food Chem; 2018 Oct; 66(40):10567-10574. PubMed ID: 30208707
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of targeted proteomics approaches for detecting and quantifying proteins derived from human cancer tissues.
    Faktor J; Sucha R; Paralova V; Liu Y; Bouchal P
    Proteomics; 2017 Mar; 17(5):. PubMed ID: 27966270
    [TBL] [Abstract][Full Text] [Related]  

  • 55. UPLC-MS(E) application in disease biomarker discovery: the discoveries in proteomics to metabolomics.
    Zhao YY; Lin RC
    Chem Biol Interact; 2014 May; 215():7-16. PubMed ID: 24631021
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mass spectrometry-based immunoassays for the next phase of clinical applications.
    Nedelkov D
    Expert Rev Proteomics; 2006 Dec; 3(6):631-40. PubMed ID: 17181477
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Capillary electrophoresis coupled to mass spectrometry for proteomic profiling of human urine and biomarker discovery.
    Zürbig P; Schiffer E; Mischak H
    Methods Mol Biol; 2009; 564():105-21. PubMed ID: 19544019
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Leveraging homologies for cross-species plasma proteomics in ungulates using data-independent acquisition.
    Noor Z; Paramasivan S; Ghodasara P; Chemonges S; Gupta R; Kopp S; Mills PC; Ranganathan S; Satake N; Sadowski P
    J Proteomics; 2022 Jan; 250():104384. PubMed ID: 34601153
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimizing the SWATH-MS-workflow for label-free proteomics.
    Simbürger JMB; Dettmer K; Oefner PJ; Reinders J
    J Proteomics; 2016 Aug; 145():137-140. PubMed ID: 27107778
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The use of sequential window acquisition of all theoretical fragment ion spectra (SWATH), a data-independent acquisition high-resolution mass spectrometry  approach, in forensic toxicological regimes: A review.
    Sarkisian M; Rodda LN
    Drug Test Anal; 2024 May; ():. PubMed ID: 38724180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.