These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 25504629)

  • 1. Fmoc-Sec(Xan)-OH: synthesis and utility of Fmoc selenocysteine SPPS derivatives with acid-labile sidechain protection.
    Flemer S
    J Pept Sci; 2015 Jan; 21(1):53-9. PubMed ID: 25504629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of 2,2'-dithiobis(5-nitropyridine) (DTNP) for deprotection and diselenide formation in protected selenocysteine-containing peptides.
    Schroll AL; Hondal RJ; Flemer S
    J Pept Sci; 2012 Mar; 18(3):155-62. PubMed ID: 22249911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic study on selenocystine-containing peptides.
    Koide T; Itoh H; Otaka A; Yasui H; Kuroda M; Esaki N; Soda K; Fujii N
    Chem Pharm Bull (Tokyo); 1993 Mar; 41(3):502-6. PubMed ID: 8477500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive one-pot synthesis of protected cysteine and selenocysteine SPPS derivatives.
    Flemer S
    Protein Pept Lett; 2014; 21(12):1257-64. PubMed ID: 24856290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of the very acid-sensitive Fmoc-Cys(Mmt)-OH and its application in solid-phase peptide synthesis.
    Barlos K; Gatos D; Hatzi O; Koch N; Koutsogianni S
    Int J Pept Protein Res; 1996 Mar; 47(3):148-53. PubMed ID: 8740963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The investigation of Fmoc-cysteine derivatives in solid phase peptide synthesis.
    McCurdy SN
    Pept Res; 1989; 2(1):147-52. PubMed ID: 2577698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p-Nitrobenzyl protection for cysteine and selenocysteine: a more stable alternative to the acetamidomethyl group.
    Muttenthaler M; Ramos YG; Feytens D; de Araujo AD; Alewood PF
    Biopolymers; 2010; 94(4):423-32. PubMed ID: 20593464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine.
    Gross CM; Lelièvre D; Woodward CK; Barany G
    J Pept Res; 2005 Mar; 65(3):395-410. PubMed ID: 15787970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-phase synthesis of reduced selenocysteine tetrapeptides and their oxidized analogs containing selenenylsulfide eight-membered rings.
    Wessjohann LA; Schneider A; Kaluđerović GN; Brandt W
    Mol Divers; 2013 Aug; 17(3):537-45. PubMed ID: 23729025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel N omega-xanthenyl-protecting groups for asparagine and glutamine, and applications to N alpha-9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis.
    Han Y; Solé NA; Tejbrant J; Barany G
    Pept Res; 1996; 9(4):166-73. PubMed ID: 8914163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-phase route to Fmoc-protected cationic amino acid building blocks.
    Clausen JD; Linderoth L; Nielsen HM; Franzyk H
    Amino Acids; 2012 Oct; 43(4):1633-41. PubMed ID: 22358257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Fmoc/solid-phase synthesis of Abu(P)-containing peptides using Fmoc-Abu(PO3Me2)-OH.
    Perich JW
    Int J Pept Protein Res; 1994 Sep; 44(3):288-94. PubMed ID: 7822106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Building Blocks for Solid-Phase Peptide Synthesis of Spin Labeled Peptides for Electron Paramagnetic Resonance and Dynamic Nuclear Polarization Applications.
    Brodrecht M; Herr K; Bothe S; de Oliveira M; Gutmann T; Buntkowsky G
    Chemphyschem; 2019 Jun; 20(11):1475-1487. PubMed ID: 30950574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preventing aspartimide formation in Fmoc SPPS of Asp-Gly containing peptides--practical aspects of new trialkylcarbinol based protecting groups.
    Behrendt R; Huber S; White P
    J Pept Sci; 2016 Feb; 22(2):92-7. PubMed ID: 26751703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile removal of 4-methoxybenzyl protecting group from selenocysteine.
    Jenny KA; Ste Marie EJ; Mose G; Ruggles EL; Hondal RJ
    J Pept Sci; 2019 Oct; 25(10):e3209. PubMed ID: 31410953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-selective solid phase synthesis of carbonylated peptides.
    Waliczek M; Kijewska M; Stefanowicz P; Szewczuk Z
    Amino Acids; 2015 Jul; 47(7):1353-65. PubMed ID: 25813939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Side-chain anchoring strategy for solid-phase synthesis of peptide acids with C-terminal cysteine.
    Barany G; Han Y; Hargittai B; Liu RQ; Varkey JT
    Biopolymers; 2003; 71(6):652-66. PubMed ID: 14991675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New heterocyclic beta-sheet ligands with peptidic recognition elements.
    Rzepecki P; Gallmeier H; Geib N; Cernovska K; König B; Schrader T
    J Org Chem; 2004 Aug; 69(16):5168-78. PubMed ID: 15287758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and synthesis of Fmoc-Thr[PO(OH)(OPOM)] for the preparation of peptide prodrugs containing phosphothreonine in fully protected form.
    Qian WJ; Lai CC; Kelley JA; Burke TR
    Chem Biodivers; 2014 May; 11(5):784-91. PubMed ID: 24827688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of selenocysteine peptides and their oxidation to diselenide-bridged compounds.
    Besse D; Moroder L
    J Pept Sci; 1997; 3(6):442-53. PubMed ID: 9467972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.