These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 2550466)
1. Cyclic AMP-dependent protein kinase in canine pancreatic rough endoplasmic reticulum. Nigam SK; Blobel G J Biol Chem; 1989 Oct; 264(28):16927-32. PubMed ID: 2550466 [TBL] [Abstract][Full Text] [Related]
2. Subcellular distribution of small GTP binding proteins in pancreas: identification of small GTP binding proteins in the rough endoplasmic reticulum. Nigam SK Proc Natl Acad Sci U S A; 1990 Feb; 87(4):1296-9. PubMed ID: 2106133 [TBL] [Abstract][Full Text] [Related]
3. Association of the regulatory subunit of a type II cAMP-dependent protein kinase and its binding proteins with the fibrous sheath of rat sperm flagellum. Macleod J; Mei X; Erlichman J; Orr GA Eur J Biochem; 1994 Oct; 225(1):107-14. PubMed ID: 7925427 [TBL] [Abstract][Full Text] [Related]
4. Coelution of the type II holoenzyme form of cAMP-dependent protein kinase with regulatory subunits of the type I form of cAMP-dependent protein kinase. Hunzicker-Dunn M; Lorenzini NA; Lynch LL; West DE J Biol Chem; 1985 Oct; 260(24):13360-9. PubMed ID: 2997164 [TBL] [Abstract][Full Text] [Related]
5. Characterization of in-vitro-translated human regulatory and catalytic subunits of cAMP-dependent protein kinases. Foss KB; Landmark B; Skålhegg BS; Taskén K; Jellum E; Hansson V; Jahnsen T Eur J Biochem; 1994 Feb; 220(1):217-23. PubMed ID: 8119290 [TBL] [Abstract][Full Text] [Related]
6. Identification, purification, and characterization of subunits of cAMP-dependent protein kinase in human testis. Reverse mobilities of human RII alpha and RII beta on sodium dodecyl sulfate-polyacrylamide gel electrophoresis compared with rat and bovine RIIs. Skålhegg BS; Landmark B; Foss KB; Lohmann SM; Hansson V; Lea T; Jahnsen T J Biol Chem; 1992 Mar; 267(8):5374-9. PubMed ID: 1544918 [TBL] [Abstract][Full Text] [Related]
7. Second messenger-specific protein kinases in a salt-absorbing intestinal epithelium. Toskulkao C; Nash NT; Leach K; Rao MC Am J Physiol; 1990 May; 258(5 Pt 1):C879-88. PubMed ID: 2159231 [TBL] [Abstract][Full Text] [Related]
8. Separation of the complexes formed between the regulatory and catalytic subunits of cyclic adenosine monophosphate-dependent protein kinase and topoisomerase I activity in preovulatory follicle-enriched immature rat ovaries. Hunzicker-Dunn M; Maizels ET; Kern LC; Ekstrom RC; Constantinou AI Mol Endocrinol; 1989 May; 3(5):780-9. PubMed ID: 2547153 [TBL] [Abstract][Full Text] [Related]
9. Functional changes in the regulatory subunit of the type II cyclic adenosine 3':5'-monophosphate-dependent protein kinase isozyme during normal and neoplastic lung development. Butley MS; Beer DG; Malkinson AM Cancer Res; 1984 Jun; 44(6):2689-97. PubMed ID: 6327022 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneity of cyclic nucleotide phosphodiesterases in liver endoplasmic reticulum. Cercek B; Wilson SR; Houslay MD Biochem J; 1983 Jul; 213(1):89-97. PubMed ID: 6311161 [TBL] [Abstract][Full Text] [Related]
11. Changes in cyclic adenosine 3':5'-monophosphate-dependent protein kinases during the progression of urethan-induced mouse lung tumors. Butley MS; Stoner GD; Beer DG; Beer DS; Mason RJ; Malkinson AM Cancer Res; 1985 Aug; 45(8):3677-85. PubMed ID: 2990675 [TBL] [Abstract][Full Text] [Related]
12. Cyclic AMP-dependent protein kinase (cAK) in human B cells: co-localization of type I cAK (RI alpha 2 C2) with the antigen receptor during anti-immunoglobulin-induced B cell activation. Levy FO; Rasmussen AM; Taskén K; Skålhegg BS; Huitfeldt HS; Funderud S; Smeland EB; Hansson V Eur J Immunol; 1996 Jun; 26(6):1290-6. PubMed ID: 8647207 [TBL] [Abstract][Full Text] [Related]
13. Identification of a G protein in rough endoplasmic reticulum of canine pancreas. Audigier Y; Nigam SK; Blobel G J Biol Chem; 1988 Nov; 263(31):16352-7. PubMed ID: 3141406 [TBL] [Abstract][Full Text] [Related]
14. Nucleolar accumulation of cyclic adenosine 3':5'-monophosphate receptor proteins during regression of MCF-7 human breast tumor. Kapoor CL; Grantham F; Cho-Chung YS Cancer Res; 1984 Aug; 44(8):3554-60. PubMed ID: 6331652 [TBL] [Abstract][Full Text] [Related]
15. Isozymes of cAMP-dependent protein kinase present in the rat corpus luteum. Hunzicker-Dunn M; Cutler RE; Maizels ET; DeManno DA; Lamm ML; Erlichman J; Sanwal BD; LaBarbera AR J Biol Chem; 1991 Apr; 266(11):7166-75. PubMed ID: 1849902 [TBL] [Abstract][Full Text] [Related]
16. The amounts of rat liver cyclic AMP-dependent protein kinase I and II are differentially regulated by diet. Ekanger R; Vintermyr OK; Døskeland SO Biochem J; 1988 Dec; 256(2):447-52. PubMed ID: 2851990 [TBL] [Abstract][Full Text] [Related]
17. High-affinity binding of the regulatory subunit (RII) of cAMP-dependent protein kinase to microtubule-associated and other cellular proteins. Lohmann SM; DeCamilli P; Einig I; Walter U Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6723-7. PubMed ID: 6093118 [TBL] [Abstract][Full Text] [Related]
18. Cyclic AMP-dependent protein kinase type I mediates the inhibitory effects of 3',5'-cyclic adenosine monophosphate on cell replication in human T lymphocytes. Skålhegg BS; Landmark BF; Døskeland SO; Hansson V; Lea T; Jahnsen T J Biol Chem; 1992 Aug; 267(22):15707-14. PubMed ID: 1379235 [TBL] [Abstract][Full Text] [Related]
19. Mitotic apparatus and nucleoli compartmentalization of 50,000-dalton type II regulatory subunit of cAMP-dependent protein kinase in estrogen receptor negative MDA-MB-231 human breast cancer cells. Kapoor CL; Cho-Chung YS Cell Biol Int Rep; 1983 Jan; 7(1):49-60. PubMed ID: 6299590 [TBL] [Abstract][Full Text] [Related]
20. Hormonal regulation of nuclear cyclic AMP-dependent protein kinase subunit levels in rat ovaries. Kwast-Welfeld J; Jungmann RA J Biol Chem; 1988 Oct; 263(28):14343-50. PubMed ID: 3139655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]