These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 25504733)

  • 1. Convergent transcriptional specializations in the brains of humans and song-learning birds.
    Pfenning AR; Hara E; Whitney O; Rivas MV; Wang R; Roulhac PL; Howard JT; Wirthlin M; Lovell PV; Ganapathy G; Mouncastle J; Moseley MA; Thompson JW; Soderblom EJ; Iriki A; Kato M; Gilbert MT; Zhang G; Bakken T; Bongaarts A; Bernard A; Lein E; Mello CV; Hartemink AJ; Jarvis ED
    Science; 2014 Dec; 346(6215):1256846. PubMed ID: 25504733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The constitutive differential transcriptome of a brain circuit for vocal learning.
    Lovell PV; Huizinga NA; Friedrich SR; Wirthlin M; Mello CV
    BMC Genomics; 2018 Apr; 19(1):231. PubMed ID: 29614959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergent differential regulation of parvalbumin in the brains of vocal learners.
    Hara E; Rivas MV; Ward JM; Okanoya K; Jarvis ED
    PLoS One; 2012; 7(1):e29457. PubMed ID: 22238614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of gene expressions among avian brains: a molecular approach to the evolution of vocal learning.
    Matsunaga E; Kato M; Okanoya K
    Brain Res Bull; 2008 Mar; 75(2-4):474-9. PubMed ID: 18331917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners.
    Wang R; Chen CC; Hara E; Rivas MV; Roulhac PL; Howard JT; Chakraborty M; Audet JN; Jarvis ED
    J Comp Neurol; 2015 Apr; 523(6):892-906. PubMed ID: 25424606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds.
    Arriaga G; Zhou EP; Jarvis ED
    PLoS One; 2012; 7(10):e46610. PubMed ID: 23071596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FoxP2 expression in avian vocal learners and non-learners.
    Haesler S; Wada K; Nshdejan A; Morrisey EE; Lints T; Jarvis ED; Scharff C
    J Neurosci; 2004 Mar; 24(13):3164-75. PubMed ID: 15056696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulatory divergence underpinning species-specific learned vocalization in songbirds.
    Wang H; Sawai A; Toji N; Sugioka R; Shibata Y; Suzuki Y; Ji Y; Hayase S; Akama S; Sese J; Wada K
    PLoS Biol; 2019 Nov; 17(11):e3000476. PubMed ID: 31721761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex differences in neuropeptide staining of song-control nuclei in zebra finch brains.
    Bottjer SW; Roselinsky H; Tran NB
    Brain Behav Evol; 1997; 50(5):284-303. PubMed ID: 9360005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Songbirds can learn flexible contextual control over syllable sequencing.
    Veit L; Tian LY; Monroy Hernandez CJ; Brainard MS
    Elife; 2021 Jun; 10():. PubMed ID: 34060473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species.
    Chen Q; Heston JB; Burkett ZD; White SA
    J Exp Biol; 2013 Oct; 216(Pt 19):3682-92. PubMed ID: 24006346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Song Deficits after Lentivirus-Mediated Knockdown of FoxP1, FoxP2, or FoxP4 in Area X of Juvenile Zebra Finches.
    Norton P; Barschke P; Scharff C; Mendoza E
    J Neurosci; 2019 Dec; 39(49):9782-9796. PubMed ID: 31641053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connections of a motor cortical region in zebra finches: relation to pathways for vocal learning.
    Bottjer SW; Brady JD; Cribbs B
    J Comp Neurol; 2000 May; 420(2):244-60. PubMed ID: 10753310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specialized motor-driven dusp1 expression in the song systems of multiple lineages of vocal learning birds.
    Horita H; Kobayashi M; Liu WC; Oka K; Jarvis ED; Wada K
    PLoS One; 2012; 7(8):e42173. PubMed ID: 22876306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory experience refines cortico-basal ganglia inputs to motor cortex via remapping of single axons during vocal learning in zebra finches.
    Miller-Sims VC; Bottjer SW
    J Neurophysiol; 2012 Feb; 107(4):1142-56. PubMed ID: 22157116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological identification of cortico-striatal projection neurons for song control in Bengalese finches.
    Hessler NA; Okanoya K
    Behav Brain Res; 2018 Sep; 349():37-41. PubMed ID: 29709609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the molecular basis of neuronal excitability in a vocal learner.
    Friedrich SR; Lovell PV; Kaser TM; Mello CV
    BMC Genomics; 2019 Aug; 20(1):629. PubMed ID: 31375088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits.
    Colquitt BM; Merullo DP; Konopka G; Roberts TF; Brainard MS
    Science; 2021 Feb; 371(6530):. PubMed ID: 33574185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomics analysis of potassium channel genes in songbirds reveals molecular specializations of brain circuits for the maintenance and production of learned vocalizations.
    Lovell PV; Carleton JB; Mello CV
    BMC Genomics; 2013 Jul; 14():470. PubMed ID: 23845108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurochemical specializations associated with vocal learning and production in songbirds and budgerigars.
    Ball GF
    Brain Behav Evol; 1994; 44(4-5):234-46. PubMed ID: 7842283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.