These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 25504883)

  • 1. Human limbal biopsy-derived stromal stem cells prevent corneal scarring.
    Basu S; Hertsenberg AJ; Funderburgh ML; Burrow MK; Mann MM; Du Y; Lathrop KL; Syed-Picard FN; Adams SM; Birk DE; Funderburgh JL
    Sci Transl Med; 2014 Dec; 6(266):266ra172. PubMed ID: 25504883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea.
    Ghoubay-Benallaoua D; de Sousa C; Martos R; Latour G; Schanne-Klein MC; Dupin E; Borderie V
    PLoS One; 2017; 12(11):e0188398. PubMed ID: 29149196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of a human hemicornea through natural scaffolds compatible with the growth of corneal epithelial stem cells and stromal keratocytes.
    Barbaro V; Ferrari S; Fasolo A; Ponzin D; Di Iorio E
    Mol Vis; 2009 Oct; 15():2084-93. PubMed ID: 19862337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dental pulp stem cells: a new cellular resource for corneal stromal regeneration.
    Syed-Picard FN; Du Y; Lathrop KL; Mann MM; Funderburgh ML; Funderburgh JL
    Stem Cells Transl Med; 2015 Mar; 4(3):276-85. PubMed ID: 25713466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.
    Karamichos D; Funderburgh ML; Hutcheon AE; Zieske JD; Du Y; Wu J; Funderburgh JL
    PLoS One; 2014; 9(1):e86260. PubMed ID: 24465995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma.
    Du Y; Sundarraj N; Funderburgh ML; Harvey SA; Birk DE; Funderburgh JL
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5038-45. PubMed ID: 17962455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAX6 expression identifies progenitor cells for corneal keratocytes.
    Funderburgh ML; Du Y; Mann MM; SundarRaj N; Funderburgh JL
    FASEB J; 2005 Aug; 19(10):1371-3. PubMed ID: 15901670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization, isolation, expansion and clinical therapy of human corneal epithelial stem/progenitor cells.
    Li DQ; Wang Z; Yoon KC; Bian F
    J Stem Cells; 2014; 9(2):79-91. PubMed ID: 25158157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressed Collagen Enhances Stem Cell Therapy for Corneal Scarring.
    Shojaati G; Khandaker I; Sylakowski K; Funderburgh ML; Du Y; Funderburgh JL
    Stem Cells Transl Med; 2018 Jun; 7(6):487-494. PubMed ID: 29654654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-fabrication of stem-cell-incorporated corneal epithelial and stromal equivalents from silk fibroin and gelatin-based biomaterial for canine corneal regeneration.
    Torsahakul C; Israsena N; Khramchantuk S; Ratanavaraporn J; Dhitavat S; Rodprasert W; Nantavisai S; Sawangmake C
    PLoS One; 2022; 17(2):e0263141. PubMed ID: 35120168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro simulation of corneal epithelium microenvironment induces a corneal epithelial-like cell phenotype from human adipose tissue mesenchymal stem cells.
    Nieto-Miguel T; Galindo S; Reinoso R; Corell A; Martino M; Pérez-Simón JA; Calonge M
    Curr Eye Res; 2013 Sep; 38(9):933-44. PubMed ID: 23767776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture.
    Ghezzi CE; Marelli B; Omenetto FG; Funderburgh JL; Kaplan DL
    PLoS One; 2017; 12(1):e0169504. PubMed ID: 28099503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model.
    Alio del Barrio JL; Chiesa M; Garagorri N; Garcia-Urquia N; Fernandez-Delgado J; Bataille L; Rodriguez A; Arnalich-Montiel F; Zarnowski T; Álvarez de Toledo JP; Alio JL; De Miguel MP
    Exp Eye Res; 2015 Mar; 132():91-100. PubMed ID: 25625506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal stromal bioequivalents secreted on patterned silk substrates.
    Wu J; Rnjak-Kovacina J; Du Y; Funderburgh ML; Kaplan DL; Funderburgh JL
    Biomaterials; 2014 Apr; 35(12):3744-55. PubMed ID: 24503156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype.
    Chan AA; Hertsenberg AJ; Funderburgh ML; Mann MM; Du Y; Davoli KA; Mich-Basso JD; Yang L; Funderburgh JL
    PLoS One; 2013; 8(2):e56831. PubMed ID: 23437251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of stromal inflammation on the outcome of limbal transplantation for corneal surface reconstruction.
    Tsai RJ; Tseng SC
    Cornea; 1995 Sep; 14(5):439-49. PubMed ID: 8536455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for preservation of human corneal limbal tissue.
    Li C; Dong N; Wu H; Dong F; Xu Y; Du H; He H; Liu Z; Li W
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):4041-7. PubMed ID: 23696602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corneal stromal stem cells versus corneal fibroblasts in generating structurally appropriate corneal stromal tissue.
    Wu J; Du Y; Mann MM; Funderburgh JL; Wagner WR
    Exp Eye Res; 2014 Mar; 120():71-81. PubMed ID: 24440595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling.
    Bath C
    Acta Ophthalmol; 2013 Jun; 91 Thesis 4():1-34. PubMed ID: 23732018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents.
    Mukhey D; Phillips JB; Daniels JT; Kureshi AK
    Acta Biomater; 2018 Feb; 67():229-237. PubMed ID: 29208552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.