BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25505031)

  • 1. Vestibular loss disrupts daily rhythm in rats.
    Martin T; Mauvieux B; Bulla J; Quarck G; Davenne D; Denise P; Philoxène B; Besnard S
    J Appl Physiol (1985); 2015 Feb; 118(3):310-8. PubMed ID: 25505031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vestibular stimulation by 2G hypergravity modifies resynchronization in temperature rhythm in rats.
    Martin T; Bonargent T; Besnard S; Quarck G; Mauvieux B; Pigeon E; Denise P; Davenne D
    Sci Rep; 2020 Jun; 10(1):9216. PubMed ID: 32514078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploration of Circadian Rhythms in Patients with Bilateral Vestibular Loss.
    Martin T; Moussay S; Bulla I; Bulla J; Toupet M; Etard O; Denise P; Davenne D; Coquerel A; Quarck G
    PLoS One; 2016; 11(6):e0155067. PubMed ID: 27341473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic centrifugation (hypergravity) disrupts the circadian system of the rat.
    Holley DC; DeRoshia CW; Moran MM; Wade CE
    J Appl Physiol (1985); 2003 Sep; 95(3):1266-78. PubMed ID: 12794036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of a BRN 3.1 deletion on the temperature response to 2G.
    Murakami DM; Erkman L; Rosenfeld MG; Fuller CA
    J Gravit Physiol; 1998 Jul; 5(1):P107-8. PubMed ID: 11542310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction.
    Mendoza J; Drevet K; Pévet P; Challet E
    J Neuroendocrinol; 2008 Feb; 20(2):251-60. PubMed ID: 18088363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of three-hour restricted food access during the light period on circadian rhythms of temperature, locomotor activity, and heart rate in rats.
    Boulamery-Velly A; Simon N; Vidal J; Mouchet J; Bruguerolle B
    Chronobiol Int; 2005; 22(3):489-98. PubMed ID: 16076649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental light and suprachiasmatic nucleus interact in the regulation of body temperature.
    Scheer FA; Pirovano C; Van Someren EJ; Buijs RM
    Neuroscience; 2005; 132(2):465-77. PubMed ID: 15802197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurovestibular modulation of circadian and homeostatic regulation: vestibulohypothalamic connection?
    Fuller PM; Jones TA; Jones SM; Fuller CA
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15723-8. PubMed ID: 12434016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroconvulsive shock alters the rat overt rhythms of motor activity and temperature without altering the circadian pacemaker.
    Anglès-Pujolràs M; Díez-Noguera A; Soria V; Urretavizcaya M; Menchón JM; Cambras T
    Behav Brain Res; 2009 Jan; 196(1):37-43. PubMed ID: 18706453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of 2G on mouse circadian rhythms.
    Murakami DM; Fuller CA
    J Gravit Physiol; 2000 Dec; 7(3):79-85. PubMed ID: 12124188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasopressin deficiency provides evidence for separate circadian oscillators of activity and temperature.
    Wideman CH; Murphy HM; Nadzam GR
    Peptides; 2000 Jun; 21(6):811-6. PubMed ID: 10959002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice.
    Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S
    Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute exposure to 2G phase shifts the rat circadian timing system.
    Hoban-Higgins TM; Murakami DM; Tandon T; Fuller CA
    J Gravit Physiol; 1995; 2(1):P58-9. PubMed ID: 11538933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic evidence for a neurovestibular influence on the mammalian circadian pacemaker.
    Fuller PM; Fuller CA
    J Biol Rhythms; 2006 Jun; 21(3):177-84. PubMed ID: 16731657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic hyperammonemia alters the circadian rhythms of corticosteroid hormone levels and of motor activity in rats.
    Ahabrach H; Piedrafita B; Ayad A; El Mlili N; Errami M; Felipo V; Llansola M
    J Neurosci Res; 2010 May; 88(7):1605-14. PubMed ID: 19998493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of angiotensin II on rhythmic per2 expression in the suprachiasmatic nucleus and heart and daily rhythm of activity in Wistar rats.
    Herichová I; Šoltésová D; Szántóová K; Mravec B; Neupauerová D; Veselá A; Zeman M
    Regul Pept; 2013 Sep; 186():49-56. PubMed ID: 23850797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From daily behavior to hormonal and neurotransmitters rhythms: comparison between diurnal and nocturnal rat species.
    Cuesta M; Clesse D; Pévet P; Challet E
    Horm Behav; 2009 Feb; 55(2):338-47. PubMed ID: 19027018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clock genes outside the suprachiasmatic nucleus involved in manifestation of locomotor activity rhythm in rats.
    Masubuchi S; Honma S; Abe H; Ishizaki K; Namihira M; Ikeda M; Honma K
    Eur J Neurosci; 2000 Dec; 12(12):4206-14. PubMed ID: 11122332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.