BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 25505143)

  • 21. DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus.
    Elmore J; Deighan T; Westpheling J; Terns RM; Terns MP
    Nucleic Acids Res; 2015 Dec; 43(21):10353-63. PubMed ID: 26519471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus.
    Deng L; Kenchappa CS; Peng X; She Q; Garrett RA
    Nucleic Acids Res; 2012 Mar; 40(6):2470-80. PubMed ID: 22139923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inactivation of Target RNA Cleavage of a III-B CRISPR-Cas System Induces Robust Autoimmunity in
    Zhang Y; Lin J; Tian X; Wang Y; Zhao R; Wu C; Wang X; Zhao P; Bi X; Yu Z; Han W; Peng N; Liang YX; She Q
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System.
    Stachler AE; Marchfelder A
    J Biol Chem; 2016 Jul; 291(29):15226-42. PubMed ID: 27226589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystallization and preliminary X-ray diffraction analysis of the CRISPR-Cas RNA-silencing Cmr complex.
    Osawa T; Inanaga H; Numata T
    Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):735-40. PubMed ID: 26057804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs.
    Hale CR; Majumdar S; Elmore J; Pfister N; Compton M; Olson S; Resch AM; Glover CV; Graveley BR; Terns RM; Terns MP
    Mol Cell; 2012 Feb; 45(3):292-302. PubMed ID: 22227116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cas4 Nucleases Can Effect Specific Integration of CRISPR Spacers.
    Zhang Z; Pan S; Liu T; Li Y; Peng N
    J Bacteriol; 2019 Jun; 201(12):. PubMed ID: 30936372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex.
    Hale CR; Zhao P; Olson S; Duff MO; Graveley BR; Wells L; Terns RM; Terns MP
    Cell; 2009 Nov; 139(5):945-56. PubMed ID: 19945378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family.
    Hrle A; Maier LK; Sharma K; Ebert J; Basquin C; Urlaub H; Marchfelder A; Conti E
    RNA Biol; 2014; 11(8):1072-82. PubMed ID: 25483036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Associated Factor Csa3b Regulates CRISPR Adaptation and Cmr-Mediated RNA Interference in
    Ye Q; Zhao X; Liu J; Zeng Z; Zhang Z; Liu T; Li Y; Han W; Peng N
    Front Microbiol; 2020; 11():2038. PubMed ID: 32983033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two CRISPR-Cas systems in Methanosarcina mazei strain Gö1 display common processing features despite belonging to different types I and III.
    Nickel L; Weidenbach K; Jäger D; Backofen R; Lange SJ; Heidrich N; Schmitz RA
    RNA Biol; 2013 May; 10(5):779-91. PubMed ID: 23619576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex.
    Hale CR; Cocozaki A; Li H; Terns RM; Terns MP
    Genes Dev; 2014 Nov; 28(21):2432-43. PubMed ID: 25367038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning.
    Taylor DW; Zhu Y; Staals RH; Kornfeld JE; Shinkai A; van der Oost J; Nogales E; Doudna JA
    Science; 2015 May; 348(6234):581-5. PubMed ID: 25837515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and characterization of ribonucleoprotein effector complexes of Sulfolobus islandicus CRISPR-Cas systems.
    Feng M; She Q
    Methods Enzymol; 2021; 659():327-347. PubMed ID: 34752293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system.
    Elmore JR; Sheppard NF; Ramia N; Deighan T; Li H; Terns RM; Terns MP
    Genes Dev; 2016 Feb; 30(4):447-59. PubMed ID: 26848045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient CRISPR-Mediated Post-Transcriptional Gene Silencing in a Hyperthermophilic Archaeon Using Multiplexed crRNA Expression.
    Zebec Z; Zink IA; Kerou M; Schleper C
    G3 (Bethesda); 2016 Oct; 6(10):3161-3168. PubMed ID: 27507792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular basis for inhibition of type III-B CRISPR-Cas by an archaeal viral anti-CRISPR protein.
    Lin J; Alfastsen L; Bhoobalan-Chitty Y; Peng X
    Cell Host Microbe; 2023 Nov; 31(11):1837-1849.e5. PubMed ID: 37909049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes.
    Plagens A; Richter H; Charpentier E; Randau L
    FEMS Microbiol Rev; 2015 May; 39(3):442-63. PubMed ID: 25934119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity.
    Charpentier E; Richter H; van der Oost J; White MF
    FEMS Microbiol Rev; 2015 May; 39(3):428-41. PubMed ID: 25994611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of the archaeal Cascade subunit Csa5: relating the small subunits of CRISPR effector complexes.
    Reeks J; Graham S; Anderson L; Liu H; White MF; Naismith JH
    RNA Biol; 2013 May; 10(5):762-9. PubMed ID: 23846216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.