BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 25505146)

  • 1. Leveraging cross-link modification events in CLIP-seq for motif discovery.
    Bahrami-Samani E; Penalva LO; Smith AD; Uren PJ
    Nucleic Acids Res; 2015 Jan; 43(1):95-103. PubMed ID: 25505146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analysis of CLIP-seq data.
    Uhl M; Houwaart T; Corrado G; Wright PR; Backofen R
    Methods; 2017 Apr; 118-119():60-72. PubMed ID: 28254606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and bioinformatics analysis of genome-wide CLIP experiments.
    Wang T; Xiao G; Chu Y; Zhang MQ; Corey DR; Xie Y
    Nucleic Acids Res; 2015 Jun; 43(11):5263-74. PubMed ID: 25958398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Six GU-rich (6GU
    Takeda JI; Masuda A; Ohno K
    Gene; 2017 Jun; 618():57-64. PubMed ID: 28392367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing Computational Steps for CLIP-Seq Data Analysis.
    Liu Q; Zhong X; Madison BB; Rustgi AK; Shyr Y
    Biomed Res Int; 2015; 2015():196082. PubMed ID: 26539468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data.
    Comoglio F; Sievers C; Paro R
    BMC Bioinformatics; 2015 Feb; 16():32. PubMed ID: 25638391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data.
    Heller D; Krestel R; Ohler U; Vingron M; Marsico A
    Nucleic Acids Res; 2017 Nov; 45(19):11004-11018. PubMed ID: 28977546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of high-confidence RNA regulatory elements by combinatorial classification of RNA-protein binding sites.
    Li YE; Xiao M; Shi B; Yang YT; Wang D; Wang F; Marcia M; Lu ZJ
    Genome Biol; 2017 Sep; 18(1):169. PubMed ID: 28886744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.
    Budak G; Srivastava R; Janga SC
    RNA; 2017 Jun; 23(6):836-846. PubMed ID: 28336542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motif Discovery from CLIP Experiments.
    Pietrosanto M; Ausiello G; Helmer-Citterich M
    Methods Mol Biol; 2021; 2284():43-50. PubMed ID: 33835436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome-wide Identification of RNA-binding Protein Binding Sites Using Photoactivatable-Ribonucleoside-Enhanced Crosslinking Immunoprecipitation (PAR-CLIP).
    Maatz H; Kolinski M; Hubner N; Landthaler M
    Curr Protoc Mol Biol; 2017 Apr; 118():27.6.1-27.6.19. PubMed ID: 28369676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PAR-CLIP for Discovering Target Sites of RNA-Binding Proteins.
    Garzia A; Morozov P; Sajek M; Meyer C; Tuschl T
    Methods Mol Biol; 2018; 1720():55-75. PubMed ID: 29236251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-linking and immunoprecipitation of nuclear RNA-binding proteins.
    Li Q; Uemura Y; Kawahara Y
    Methods Mol Biol; 2015; 1262():247-63. PubMed ID: 25555586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of RNA-RBP Interactions in Subcellular Compartments by CLIP-Seq.
    Sahadevan S; PĂ©rez-Berlanga M; Polymenidou M
    Methods Mol Biol; 2022; 2428():305-323. PubMed ID: 35171488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mCarts: Genome-Wide Prediction of Clustered Sequence Motifs as Binding Sites for RNA-Binding Proteins.
    Weyn-Vanhentenryck SM; Zhang C
    Methods Mol Biol; 2016; 1421():215-26. PubMed ID: 26965268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SARNAclust: Semi-automatic detection of RNA protein binding motifs from immunoprecipitation data.
    Dotu I; Adamson SI; Coleman B; Fournier C; Ricart-Altimiras E; Eyras E; Chuang JH
    PLoS Comput Biol; 2018 Mar; 14(3):e1006078. PubMed ID: 29596423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of Allele-Specific Protein-RNA Interactions in Human Transcriptomes.
    Bahrami-Samani E; Xing Y
    Am J Hum Genet; 2019 Mar; 104(3):492-502. PubMed ID: 30827501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.