These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25505187)

  • 1. Interaction of the Agrobacterium tumefaciens virulence protein VirD2 with histones.
    Wolterink-van Loo S; Ayala AAE; Hooykaas PJJ; van Heusden GPH
    Microbiology (Reading); 2015 Feb; 161(Pt 2):401-410. PubMed ID: 25505187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens: analysis by subcellular localization in mammalian cells.
    Relić B; Andjelković M; Rossi L; Nagamine Y; Hohn B
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9105-10. PubMed ID: 9689041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of phiLOV2.1 as a fluorescent marker for visualization of Agrobacterium effector protein translocation.
    Roushan MR; de Zeeuw MAM; Hooykaas PJJ; van Heusden GPH
    Plant J; 2018 Nov; 96(3):685-699. PubMed ID: 30098065
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Li X; Yang Q; Peng L; Tu H; Lee LY; Gelvin SB; Pan SQ
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26389-26397. PubMed ID: 33020260
    [No Abstract]   [Full Text] [Related]  

  • 5. Expression of plant protein phosphatase 2C interferes with nuclear import of the Agrobacterium T-complex protein VirD2.
    Tao Y; Rao PK; Bhattacharjee S; Gelvin SB
    Proc Natl Acad Sci U S A; 2004 Apr; 101(14):5164-9. PubMed ID: 15047887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3.
    Schrammeijer B; den Dulk-Ras A; Vergunst AC; Jurado Jácome E; Hooykaas PJ
    Nucleic Acids Res; 2003 Feb; 31(3):860-8. PubMed ID: 12560481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agrobacterium-Mediated Transformation of Yeast and Fungi.
    Hooykaas PJJ; van Heusden GPH; Niu X; Reza Roushan M; Soltani J; Zhang X; van der Zaal BJ
    Curr Top Microbiol Immunol; 2018; 418():349-374. PubMed ID: 29770864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional domains of Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2.
    Dombek P; Ream W
    J Bacteriol; 1997 Feb; 179(4):1165-73. PubMed ID: 9023198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells.
    Sakalis PA; van Heusden GP; Hooykaas PJ
    Microbiologyopen; 2014 Feb; 3(1):104-17. PubMed ID: 24376037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system.
    Simone M; McCullen CA; Stahl LE; Binns AN
    Mol Microbiol; 2001 Sep; 41(6):1283-93. PubMed ID: 11580834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Rad52 in T-DNA circle formation during Agrobacterium tumefaciens-mediated transformation of Saccharomyces cerevisiae.
    Rolloos M; Dohmen MH; Hooykaas PJ; van der Zaal BJ
    Mol Microbiol; 2014 Mar; 91(6):1240-51. PubMed ID: 24460832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation.
    Pansegrau W; Schoumacher F; Hohn B; Lanka E
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11538-42. PubMed ID: 8265585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of Agrobacterium nopaline-specific VirD1, VirD2, and VirC1 proteins and their requirement for T-strand production in E. coli.
    De Vos G; Zambryski P
    Mol Plant Microbe Interact; 1989; 2(2):43-52. PubMed ID: 2520160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct visualization of Agrobacterium-delivered VirE2 in recipient cells.
    Li X; Yang Q; Tu H; Lim Z; Pan SQ
    Plant J; 2014 Feb; 77(3):487-95. PubMed ID: 24299048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration.
    Mysore KS; Bassuner B; Deng XB; Darbinian NS; Motchoulski A; Ream W; Gelvin SB
    Mol Plant Microbe Interact; 1998 Jul; 11(7):668-83. PubMed ID: 9650299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein.
    Ballas N; Citovsky V
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10723-8. PubMed ID: 9380702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initiation of Agrobacterium tumefaciens T-DNA processing. Purified proteins VirD1 and VirD2 catalyze site- and strand-specific cleavage of superhelical T-border DNA in vitro.
    Scheiffele P; Pansegrau W; Lanka E
    J Biol Chem; 1995 Jan; 270(3):1269-76. PubMed ID: 7836390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does the T-DNA of Agrobacterium tumefaciens find its way into the plant cell nucleus?
    Koukolíková-Nicola Z; Hohn B
    Biochimie; 1993; 75(8):635-8. PubMed ID: 8286434
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Yang Q; Li X; Tu H; Pan SQ
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2982-2987. PubMed ID: 28242680
    [No Abstract]   [Full Text] [Related]  

  • 20. Agrobacterium VirD2 protein interacts with plant host cyclophilins.
    Deng W; Chen L; Wood DW; Metcalfe T; Liang X; Gordon MP; Comai L; Nester EW
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):7040-5. PubMed ID: 9618535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.