BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 25505263)

  • 21. Exogenous H
    Sun Y; Tian Z; Liu N; Zhang L; Gao Z; Sun X; Yu M; Wu J; Yang F; Zhao Y; Ren H; Chen H; Zhao D; Wang Y; Dong S; Xu C; Lu F; Zhang W
    J Mol Med (Berl); 2018 Apr; 96(3-4):281-299. PubMed ID: 29349500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
    Rardin MJ; Newman JC; Held JM; Cusack MP; Sorensen DJ; Li B; Schilling B; Mooney SD; Kahn CR; Verdin E; Gibson BW
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6601-6. PubMed ID: 23576753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular chaperone disorders: defective Hsp60 in neurodegeneration.
    Bross P; Magnoni R; Bie AS
    Curr Top Med Chem; 2012; 12(22):2491-503. PubMed ID: 23339303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria.
    Höhfeld J; Hartl FU
    J Cell Biol; 1994 Jul; 126(2):305-15. PubMed ID: 7913473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation.
    Kendrick AA; Choudhury M; Rahman SM; McCurdy CE; Friederich M; Van Hove JL; Watson PA; Birdsey N; Bao J; Gius D; Sack MN; Jing E; Kahn CR; Friedman JE; Jonscher KR
    Biochem J; 2011 Feb; 433(3):505-14. PubMed ID: 21044047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism.
    Hirschey MD; Shimazu T; Huang JY; Schwer B; Verdin E
    Cold Spring Harb Symp Quant Biol; 2011; 76():267-77. PubMed ID: 22114326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pivotal role of protein acetylation in linking glucose and fatty acid metabolism to β-cell function.
    Zhang Y; Zhou F; Bai M; Liu Y; Zhang L; Zhu Q; Bi Y; Ning G; Zhou L; Wang X
    Cell Death Dis; 2019 Jan; 10(2):66. PubMed ID: 30683850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SENP1-Sirt3 Signaling Controls Mitochondrial Protein Acetylation and Metabolism.
    Wang T; Cao Y; Zheng Q; Tu J; Zhou W; He J; Zhong J; Chen Y; Wang J; Cai R; Zuo Y; Wei B; Fan Q; Yang J; Wu Y; Yi J; Li D; Liu M; Wang C; Zhou A; Li Y; Wu X; Yang W; Chin YE; Chen G; Cheng J
    Mol Cell; 2019 Aug; 75(4):823-834.e5. PubMed ID: 31302001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase.
    Zhang Y; Bharathi SS; Rardin MJ; Uppala R; Verdin E; Gibson BW; Goetzman ES
    PLoS One; 2015; 10(3):e0122297. PubMed ID: 25811481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of Fatty Acid Binding Protein 4/aP2 Reduces Macrophage Inflammation Through Activation of SIRT3.
    Xu H; Hertzel AV; Steen KA; Bernlohr DA
    Mol Endocrinol; 2016 Mar; 30(3):325-34. PubMed ID: 26789108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sirt3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice.
    Li M; Li CM; Ye ZC; Huang J; Li Y; Lai W; Peng H; Lou TQ
    J Cell Mol Med; 2020 May; 24(9):5109-5121. PubMed ID: 32281286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myocyte protection by 10 kD heat shock protein (Hsp10) involves the mobile loop and attenuation of the Ras GTP-ase pathway.
    Lin KM; Hollander JM; Kao VY; Lin B; Macpherson L; Dillmann WH
    FASEB J; 2004 Jun; 18(9):1004-6. PubMed ID: 15059967
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
    Sol EM; Wagner SA; Weinert BT; Kumar A; Kim HS; Deng CX; Choudhary C
    PLoS One; 2012; 7(12):e50545. PubMed ID: 23236377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular chaperones and mitochondrial protein folding.
    Martin J
    J Bioenerg Biomembr; 1997 Feb; 29(1):35-43. PubMed ID: 9067800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HSP60 possesses a GTPase activity and mediates protein folding with HSP10.
    Okamoto T; Yamamoto H; Kudo I; Matsumoto K; Odaka M; Grave E; Itoh H
    Sci Rep; 2017 Dec; 7(1):16931. PubMed ID: 29208924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NO-induced downregulation of HSP10 and HSP60 expression in the postischemic brain.
    Kim SW; Lee JK
    J Neurosci Res; 2007 May; 85(6):1252-9. PubMed ID: 17348040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mitochondrial NAD
    Fu Z; Kim H; Morse PT; Lu MJ; Hüttemann M; Cambronne XA; Zhang K; Zhang R
    Metabolism; 2022 Oct; 135():155275. PubMed ID: 35932995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Role and Mechanism of CREBH Regulating SIRT3 in Metabolic Associated Fatty Liver Disease.
    Junli Z; Shuhan W; Yajuan Z; Xiaoling D; Jiahuan L; Keshu X
    Life Sci; 2022 Oct; 306():120838. PubMed ID: 35902030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chaperonin GroESL mediates the protein folding of human liver mitochondrial aldehyde dehydrogenase in Escherichia coli.
    Lee KH; Kim HS; Jeong HS; Lee YS
    Biochem Biophys Res Commun; 2002 Oct; 298(2):216-24. PubMed ID: 12387818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications.
    Ghanta S; Grossmann RE; Brenner C
    Crit Rev Biochem Mol Biol; 2013; 48(6):561-74. PubMed ID: 24050258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.