These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 2550531)

  • 21. Inhibition of Streptococcus mutans adherence by means of surface hydrophilization.
    Olsson J; Carlén A; Holmberg K
    J Dent Res; 1990 Sep; 69(9):1586-91. PubMed ID: 2168904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pellicle precursor proteins: acidic proline-rich proteins, statherin, and histatins, and their crosslinking reaction by oral transglutaminase.
    Yao Y; Lamkin MS; Oppenheim FG
    J Dent Res; 1999 Nov; 78(11):1696-703. PubMed ID: 10576165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lysozyme and lactoperoxidase inhibit the adherence of Streptococcus mutans NCTC 10449 (serotype c) to saliva-treated hydroxyapatite in vitro.
    Roger V; Tenovuo J; Lenander-Lumikari M; Söderling E; Vilja P
    Caries Res; 1994; 28(6):421-8. PubMed ID: 7850845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduction of Streptococcus mutans adherence and dental biofilm formation by surface treatment with phosphorylated polyethylene glycol.
    Shimotoyodome A; Koudate T; Kobayashi H; Nakamura J; Tokimitsu I; Hase T; Inoue T; Matsukubo T; Takaesu Y
    Antimicrob Agents Chemother; 2007 Oct; 51(10):3634-41. PubMed ID: 17646419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parotid salivary basic proline-rich proteins inhibit HIV-I infectivity.
    Robinovitch MR; Ashley RL; Iversen JM; Vigoren EM; Oppenheim FG; Lamkin M
    Oral Dis; 2001 Mar; 7(2):86-93. PubMed ID: 11355444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of removing the negatively charged N-terminal region of the salivary acidic proline-rich proteins by human leucocyte elastase.
    Boackle RJ; Dutton SL; Robinson WL; Vesely J; Lever JK; Su HR; Chang NS
    Arch Oral Biol; 1999 Jul; 44(7):575-85. PubMed ID: 10414872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of salivary fibronectin with oral streptococci.
    Babu JP; Dabbous MK
    J Dent Res; 1986 Aug; 65(8):1094-100. PubMed ID: 3016049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adherence of microorganisms to rat salivary pellicles.
    Kopec LK; Bowen WH
    Caries Res; 1995; 29(6):507-12. PubMed ID: 8556756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pellicle receptors for Actinomyces viscosus type 1 fimbriae in vitro.
    Clark WB; Beem JE; Nesbitt WE; Cisar JO; Tseng CC; Levine MJ
    Infect Immun; 1989 Oct; 57(10):3003-8. PubMed ID: 2570751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adhesion of Streptococcus mutans to salivary proteins in caries-free and caries-susceptible individuals.
    Castro P; Tovar JA; Jaramillo L
    Acta Odontol Latinoam; 2006; 19(2):59-66. PubMed ID: 17645212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adhesion of actinomyces isolates to experimental pellicles.
    Steinberg D; Kopec LK; Bowen WH
    J Dent Res; 1993 Jun; 72(6):1015-20. PubMed ID: 8496474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential role of lysozyme in bactericidal activity of in vitro-acquired salivary pellicle against Streptococcus faecium 9790.
    Germaine GR; Tellefson LM
    Infect Immun; 1986 Dec; 54(3):846-54. PubMed ID: 3023239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial adhesion to oral tissues: a model for infectious diseases.
    Gibbons RJ
    J Dent Res; 1989 May; 68(5):750-60. PubMed ID: 2654229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphopeptides derived from human salivary acidic proline-rich proteins. Biological activities and concentration in saliva.
    Madapallimattam G; Bennick A
    Biochem J; 1990 Sep; 270(2):297-304. PubMed ID: 2169237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of human salivary acidic proline-rich proteins in the formation of acquired dental pellicle in vivo and their fate after adsorption to the human enamel surface.
    Bennick A; Chau G; Goodlin R; Abrams S; Tustian D; Madapallimattam G
    Arch Oral Biol; 1983; 28(1):19-27. PubMed ID: 6409064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Non mucin proteins of saliva with high homology of polypeptide chains].
    Zalewska A; Pietruska MD; Knaś M; Zwierz K
    Postepy Hig Med Dosw; 2001; 55(5):733-54. PubMed ID: 11795206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal and compositional characteristics of salivary protein adsorption to hydroxyapatite.
    Lamkin MS; Arancillo AA; Oppenheim FG
    J Dent Res; 1996 Feb; 75(2):803-8. PubMed ID: 8655778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Partial characterization of a human submandibular/sublingual salivary adhesion-promoting protein.
    Akintoye SO; Dasso M; Hay DI; Ganeshkumar N; Spielman AI
    Arch Oral Biol; 2002 May; 47(5):337-45. PubMed ID: 12015214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of streptozotocin diabetes on salivary-mediated bacterial aggregation and adherence.
    Anderson LC; Yang SC; Xie H; Lamont RJ
    Arch Oral Biol; 1994 Apr; 39(4):261-9. PubMed ID: 8024489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of parotid saliva proteins and adhesion of Streptococcus mutans ATCC 21752 to dental fiber-reinforced composites.
    Tanner J; Carlén A; Söderling E; Vallittu PK
    J Biomed Mater Res B Appl Biomater; 2003 Jul; 66(1):391-8. PubMed ID: 12808599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.