These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 25505784)
1. Optimization of thermoelectric performance of SrSi2-based alloys via the modification in band structure and phonon-point-defect scattering. Kuo YK; Ramachandran B; Lue CS Front Chem; 2014; 2():106. PubMed ID: 25505784 [TBL] [Abstract][Full Text] [Related]
2. Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe. Liu H; Zhang X; Li J; Bu Z; Meng X; Ang R; Li W ACS Appl Mater Interfaces; 2019 Aug; 11(34):30756-30762. PubMed ID: 31386339 [TBL] [Abstract][Full Text] [Related]
3. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides. Rhyee JS; Kim JH Materials (Basel); 2015 Mar; 8(3):1283-1324. PubMed ID: 28788002 [TBL] [Abstract][Full Text] [Related]
4. Significantly Enhanced Thermoelectric Performance of Kannan VP; Lourdhusamy V; Paulraj I; Madanagurusamy S; Liu CJ ACS Appl Mater Interfaces; 2024 Oct; 16(43):58677-58688. PubMed ID: 39406714 [No Abstract] [Full Text] [Related]
5. Extraordinary Role of Bi for Improving Thermoelectrics in Low-Solubility SnTe-CdTe Alloys. Chen Z; Guo X; Tang J; Xiong F; Li W; Chen Y; Ang R ACS Appl Mater Interfaces; 2019 Jul; 11(29):26093-26099. PubMed ID: 31265233 [TBL] [Abstract][Full Text] [Related]
6. Engineering Band Structure via the Site Preference of Pb(2+) in the In(+) Site for Enhanced Thermoelectric Performance of In6Se7. Cui J; Cheng M; Wu W; Du Z; Chao Y ACS Appl Mater Interfaces; 2016 Sep; 8(35):23175-80. PubMed ID: 27541319 [TBL] [Abstract][Full Text] [Related]
7. Boosting Thermoelectric Performance of Cu Ming H; Zhu G; Zhu C; Qin X; Chen T; Zhang J; Li D; Xin H; Jabar B ACS Nano; 2021 Jun; 15(6):10532-10541. PubMed ID: 34076407 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Thermoelectric Performance Achieved in SnTe via the Synergy of Valence Band Regulation and Fermi Level Modulation. Xu X; Cui J; Fu L; Huang Y; Yu Y; Zhou Y; Wu D; He J ACS Appl Mater Interfaces; 2021 Oct; 13(42):50037-50045. PubMed ID: 34662100 [TBL] [Abstract][Full Text] [Related]
9. Thermoelectric Transport Properties of Cd Li J; Li W; Bu Z; Wang X; Gao B; Xiong F; Chen Y; Pei Y ACS Appl Mater Interfaces; 2018 Nov; 10(46):39904-39911. PubMed ID: 30375223 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Thermoelectric Properties of p-Type CaMg Guo M; Guo F; Zhu J; Yin L; Qin H; Zhang Q; Cai W; Sui J ACS Appl Mater Interfaces; 2020 Feb; 12(5):6015-6021. PubMed ID: 31913592 [TBL] [Abstract][Full Text] [Related]
11. Engineering the electronic band structure and thermoelectric performance of GeTe Wang T; Zhang C; Yang JY; Liu L Phys Chem Chem Phys; 2021 Oct; 23(41):23576-23585. PubMed ID: 34651633 [TBL] [Abstract][Full Text] [Related]
12. High-Performance Mg Li A; Fu C; Zhao X; Zhu T Research (Wash D C); 2020; 2020():1934848. PubMed ID: 33623901 [TBL] [Abstract][Full Text] [Related]
13. High thermoelectric performance in low-cost SnS He W; Wang D; Wu H; Xiao Y; Zhang Y; He D; Feng Y; Hao YJ; Dong JF; Chetty R; Hao L; Chen D; Qin J; Yang Q; Li X; Song JM; Zhu Y; Xu W; Niu C; Li X; Wang G; Liu C; Ohta M; Pennycook SJ; He J; Li JF; Zhao LD Science; 2019 Sep; 365(6460):1418-1424. PubMed ID: 31604269 [TBL] [Abstract][Full Text] [Related]
14. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Liu Z; Sun J; Mao J; Zhu H; Ren W; Zhou J; Wang Z; Singh DJ; Sui J; Chu CW; Ren Z Proc Natl Acad Sci U S A; 2018 May; 115(21):5332-5337. PubMed ID: 29735697 [TBL] [Abstract][Full Text] [Related]
15. Band Structure and Phonon Transport Engineering Realizing Remarkable Improvement in Thermoelectric Performance of Cu Qu L; Yang C; Luo Y; Du Z; Li C; Cui J ACS Appl Mater Interfaces; 2022 Oct; 14(40):45628-45635. PubMed ID: 36190823 [TBL] [Abstract][Full Text] [Related]
16. An impurity intermediate band due to Pb doping induced promising thermoelectric performance of Ca5In2Sb6. Feng Z; Wang Y; Yan Y; Zhang G; Yang J; Zhang J; Wang C Phys Chem Chem Phys; 2015 Jun; 17(23):15156-64. PubMed ID: 25991513 [TBL] [Abstract][Full Text] [Related]
17. Achieving High Thermoelectric Performance in Rare-Earth Element-Free CaMg Guo M; Guo F; Zhu J; Yin L; Zhang Q; Cai W; Sui J Research (Wash D C); 2020; 2020():5016564. PubMed ID: 32783029 [TBL] [Abstract][Full Text] [Related]
18. Improved Thermoelectric Performance of Cu Zhu C; Chen Q; Ming H; Qin X; Yang Y; Zhang J; Peng D; Chen T; Li D; Kawazoe Y ACS Appl Mater Interfaces; 2021 Jun; 13(21):25092-25101. PubMed ID: 34027655 [TBL] [Abstract][Full Text] [Related]
19. Theoretical model for predicting thermoelectric properties of tin chalcogenides. Gupta R; Kumar N; Kaur P; Bera C Phys Chem Chem Phys; 2020 Sep; 22(34):18989-19008. PubMed ID: 32812596 [TBL] [Abstract][Full Text] [Related]
20. Synergetic effect of Zn substitution on the electron and phonon transport in Mg2Si0.5Sn0.5-based thermoelectric materials. Gao H; Zhu T; Zhao X; Deng Y Dalton Trans; 2014 Oct; 43(37):14072-8. PubMed ID: 25118956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]