BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25506051)

  • 1. Development and validation of a statistical shape modeling-based finite element model of the cervical spine under low-level multiple direction loading conditions.
    Bredbenner TL; Eliason TD; Francis WL; McFarland JM; Merkle AC; Nicolella DP
    Front Bioeng Biotechnol; 2014; 2():58. PubMed ID: 25506051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis of the cervical spine: a material property sensitivity study.
    Kumaresan S; Yoganandan N; Pintar FA
    Clin Biomech (Bristol, Avon); 1999 Jan; 14(1):41-53. PubMed ID: 10619089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics.
    Brolin K; Halldin P
    Spine (Phila Pa 1976); 2004 Feb; 29(4):376-85. PubMed ID: 15094533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injury mechanisms of the ligamentous cervical C2-C3 Functional Spinal Unit to complex loading modes: Finite Element study.
    Mustafy T; Moglo K; Adeeb S; El-Rich M
    J Mech Behav Biomed Mater; 2016 Jan; 53():384-396. PubMed ID: 26409229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and initial evaluation of a finite element model of the pediatric craniocervical junction.
    Phuntsok R; Mazur MD; Ellis BJ; Ravindra VM; Brockmeyer DL
    J Neurosurg Pediatr; 2016 Apr; 17(4):497-503. PubMed ID: 26684768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FEBio finite element model of a pediatric cervical spine.
    Finley SM; Astin JH; Joyce E; Dailey AT; Brockmeyer DL; Ellis BJ
    J Neurosurg Pediatr; 2022 Feb; 29(2):218-224. PubMed ID: 34678779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.
    Zafarparandeh I; Erbulut DU; Ozer AF
    Proc Inst Mech Eng H; 2016 Jul; 230(7):700-6. PubMed ID: 27107032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development, validation, and application of ligamentous cervical spinal segment C6-C7 of a six-year-old child and an adult.
    Li Z; Song G; Su Z; Wang G
    Comput Methods Programs Biomed; 2020 Jan; 183():105080. PubMed ID: 31525549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of morphological variations on cervical spine segmental responses from inertial loading.
    John JD; Yoganandan N; Arun MWJ; Saravana Kumar G
    Traffic Inj Prev; 2018 Feb; 19(sup1):S29-S36. PubMed ID: 29584503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading.
    Ng HW; Teo EC
    J Spinal Disord; 2001 Jun; 14(3):201-10. PubMed ID: 11389369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of cervical spinal instability under physiologic loading.
    Ng HW; Teo EC; Lee KK; Qiu TX
    J Spinal Disord Tech; 2003 Feb; 16(1):55-65. PubMed ID: 12571486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element analysis of moment-rotation relationships for human cervical spine.
    Zhang QH; Teo EC; Ng HW; Lee VS
    J Biomech; 2006; 39(1):189-93. PubMed ID: 16271604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating ligament laxity in a finite element model for the upper cervical spine.
    Lasswell TL; Cronin DS; Medley JB; Rasoulinejad P
    Spine J; 2017 Nov; 17(11):1755-1764. PubMed ID: 28673824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine.
    Wheeldon JA; Pintar FA; Knowles S; Yoganandan N
    J Biomech; 2006; 39(2):375-80. PubMed ID: 16321642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of in vivo lower cervical spinal loading using musculoskeletal multi-body dynamics model during the head flexion/extension, lateral bending and axial rotation.
    Diao H; Xin H; Jin Z
    Proc Inst Mech Eng H; 2018 Nov; 232(11):1071-1082. PubMed ID: 30223718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3.
    Mustafy T; El-Rich M; Mesfar W; Moglo K
    J Biomech; 2014 Sep; 47(12):2891-903. PubMed ID: 25129167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C4-C5 segment finite element model development, validation, and load-sharing investigation.
    Panzer MB; Cronin DS
    J Biomech; 2009 Mar; 42(4):480-90. PubMed ID: 19200548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a detailed human neck finite element model and injury risk curves under lateral impact.
    Meyer F; Humm J; Yoganandan N; Leszczynski A; Bourdet N; Deck C; Willinger R
    J Mech Behav Biomed Mater; 2021 Apr; 116():104318. PubMed ID: 33516127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forces and moments in cervical spinal column segments in frontal impacts using finite element modeling and human cadaver tests.
    Meyer F; Humm J; Purushothaman Y; Willinger R; Pintar FA; Yoganandan N
    J Mech Behav Biomed Mater; 2019 Feb; 90():681-688. PubMed ID: 30529569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.