BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2550627)

  • 1. Evidence for the ordered release of rubidium ions occluded within individual protomers of dog kidney Na+,K+-ATPase.
    Glynn IM; Richards DE
    J Physiol; 1989 Jan; 408():57-66. PubMed ID: 2550627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for the ordered release of rubidium ions occluded within the Na,K-ATPase of mammalian kidney.
    Glynn IM; Howland JL; Richards DE
    J Physiol; 1985 Nov; 368():453-69. PubMed ID: 3001296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of rates of cation release and of conformational change in dog kidney Na, K-ATPase.
    Glynn IM; Hara Y; Richards DE; Steinberg M
    J Physiol; 1987 Feb; 383():477-85. PubMed ID: 2443654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occlusion of cobalt ions within the phosphorylated forms of the Na+-K+ pump isolated from dog kidney.
    Richards DE
    J Physiol; 1988 Oct; 404():497-514. PubMed ID: 2855351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport.
    Glynn IM; Richards DE
    J Physiol; 1982 Sep; 330():17-43. PubMed ID: 6294286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The active site structure of Na+- and K+-stimulated ATPase. Location of a specific fluorescein isothiocyanate reactive site.
    Carilli CT; Farley RA; Perlman DM; Cantley LC
    J Biol Chem; 1982 May; 257(10):5601-6. PubMed ID: 6279607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of lanthanides as competitors of Na+ and K+ in occlusion sites of renal (Na+,K+)-ATPase.
    David P; Karlish SJ
    J Biol Chem; 1991 Aug; 266(23):14896-902. PubMed ID: 1651313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid release of 45Ca from an occluded state of the Na,K-pump.
    Forbush B
    J Biol Chem; 1988 Jun; 263(17):7970-8. PubMed ID: 2836404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of monovalent cations to Na+,K+-dependent ATPase purified from porcine kidney. I. Simultaneous binding of three sodium and two potassium or rubidium ions to the enzyme.
    Yamaguchi M; Tonomura Y
    J Biochem; 1980 Nov; 88(5):1365-75. PubMed ID: 6257664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that the cation occlusion domain of Na/K-ATPase consists of a complex of membrane-spanning segments. Analysis of limit membrane-embedded tryptic fragments.
    Shainskaya A; Karlish SJ
    J Biol Chem; 1994 Apr; 269(14):10780-9. PubMed ID: 8144667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of (Na+ + K+)-dependent ATPase by fluorescein isothiocyanate: evidence for the involvement of different amino groups at different PH values.
    Sen PC; Kapakos JG; Steinberg M
    Arch Biochem Biophys; 1981 Oct; 211(2):652-61. PubMed ID: 6272649
    [No Abstract]   [Full Text] [Related]  

  • 12. The amino acid sequence of the fluorescein isothiocyanate reactive site of lamb and rat kidney Na+- and K+-dependent ATPase.
    Kirley TL; Wallick ET; Lane LK
    Biochem Biophys Res Commun; 1984 Dec; 125(2):767-73. PubMed ID: 6097247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of competitive sodium-like antagonists on Na,K-ATPase suggest that cation occlusion from the cytoplasmic surface occurs in two steps.
    Or E; David P; Shainskaya A; Tal DM; Karlish SJ
    J Biol Chem; 1993 Aug; 268(23):16929-37. PubMed ID: 8394324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of alkali ions with Na,K-ATPase.
    Grell E; Mezele M; Lewitzki E; Ruf H
    J Protein Chem; 1989 Jun; 8(3):376-7. PubMed ID: 2551319
    [No Abstract]   [Full Text] [Related]  

  • 15. The occlusion of sodium ions within the mammalian sodium-potassium pump: its role in sodium transport.
    Glynn IM; Hara Y; Richards DE
    J Physiol; 1984 Jun; 351():531-47. PubMed ID: 6086905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of amines with the occluded state of the Na,K-pump.
    Forbush B
    J Biol Chem; 1988 Jun; 263(17):7979-88. PubMed ID: 2836405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of the rates of conformational changes reported by fluorescein 5'-isothiocyanate modification of H+,K(+)- and Na+,K(+)-ATPases.
    Faller LD; Diaz RA; Scheiner-Bobis G; Farley RA
    Biochemistry; 1991 Apr; 30(14):3503-10. PubMed ID: 1849428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of ouabain-sensitive phosphatase activity in the absence of potassium ion in purified pig kidney Na,K-ATPase.
    Nagamune H; Urayama O; Hara Y; Nakao M
    J Biochem; 1986 Jun; 99(6):1613-24. PubMed ID: 3017924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pathway for spontaneous occlusion of Rb+ in the Na+/K+-ATPase.
    González-Lebrero RM; Kaufman SB; Garrahan PJ; Rossi RC
    Biochemistry; 2008 Jun; 47(22):6073-80. PubMed ID: 18465842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lateral mobility of the (Na+,K+)-dependent ATPase in Madin-Darby canine kidney cells.
    Jesaitis AJ; Yguerabide J
    J Cell Biol; 1986 Apr; 102(4):1256-63. PubMed ID: 3007531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.