These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25506747)

  • 21. Regulation and dysregulation of neuronal circuits by KARs.
    Mulle C; Crépel V
    Neuropharmacology; 2021 Oct; 197():108699. PubMed ID: 34246686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of Extrasynaptic Kainate Receptors Drives Hilar Mossy Cell Activity.
    Ramos C; Lutzu S; Yamasaki M; Yanagawa Y; Sakimura K; Tomita S; Watanabe M; Castillo PE
    J Neurosci; 2022 Apr; 42(14):2872-2884. PubMed ID: 35197316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabotropic actions of kainate receptors in the CNS.
    Rodríguez-Moreno A; Sihra TS
    J Neurochem; 2007 Dec; 103(6):2121-35. PubMed ID: 18070252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Antiseizure Drug Perampanel Is a Subunit-Selective Negative Allosteric Modulator of Kainate Receptors.
    Taniguchi S; Stolz JR; Swanson GT
    J Neurosci; 2022 Jul; 42(28):5499-5509. PubMed ID: 35654603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Presynaptic Kainate Receptors onto Somatostatin Interneurons Are Recruited by Activity throughout Development and Contribute to Cortical Sensory Adaptation.
    Stachniak TJ; Argunsah AÖ; Yang JW; Cai L; Karayannis T
    J Neurosci; 2023 Oct; 43(43):7101-7118. PubMed ID: 37709538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Deletion of GluK2 Alters Cholinergic Control of Neuronal Excitability.
    Gorlewicz A; Barthet G; Zucca S; Vincent P; Griguoli M; Grosjean N; Wilczynski G; Mulle C
    Cereb Cortex; 2022 Jul; 32(14):2907-2923. PubMed ID: 34730179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kainate and AMPA receptors in epilepsy: Cell biology, signalling pathways and possible crosstalk.
    Henley JM; Nair JD; Seager R; Yucel BP; Woodhall G; Henley BS; Talandyte K; Needs HI; Wilkinson KA
    Neuropharmacology; 2021 Sep; 195():108569. PubMed ID: 33915142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Agonist binding to the GluK5 subunit is sufficient for functional surface expression of heteromeric GluK2/GluK5 kainate receptors.
    Fisher JL; Housley PR
    Cell Mol Neurobiol; 2013 Nov; 33(8):1099-108. PubMed ID: 23975096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabotropic actions of kainate receptors in the regulation of I(sAHP) and excitability in CA1 pyramidal cells.
    Melyan Z; Wheal HV
    Adv Exp Med Biol; 2011; 717():49-58. PubMed ID: 21713666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hippocampal kainate receptors.
    Bloss EB; Hunter RG
    Vitam Horm; 2010; 82():167-84. PubMed ID: 20472138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of GluK1 kainate receptors in seizures, epileptic discharges, and epileptogenesis.
    Fritsch B; Reis J; Gasior M; Kaminski RM; Rogawski MA
    J Neurosci; 2014 Apr; 34(17):5765-75. PubMed ID: 24760837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping the ligand binding sites of kainate receptors: molecular determinants of subunit-selective binding of the antagonist [3H]UBP310.
    Atlason PT; Scholefield CL; Eaves RJ; Mayo-Martin MB; Jane DE; Molnár E
    Mol Pharmacol; 2010 Dec; 78(6):1036-45. PubMed ID: 20837679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure, Function, and Regulation of the Kainate Receptor.
    Dhingra S; Yadav J; Kumar J
    Subcell Biochem; 2022; 99():317-350. PubMed ID: 36151381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contributions of different kainate receptor subunits to the properties of recombinant homomeric and heteromeric receptors.
    Fisher MT; Fisher JL
    Neuroscience; 2014 Oct; 278():70-80. PubMed ID: 25139762
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative analysis of kainate receptor GluK2 and GluK5 knockout mice in a pure genetic background.
    Iida I; Konno K; Natsume R; Abe M; Watanabe M; Sakimura K; Terunuma M
    Behav Brain Res; 2021 May; 405():113194. PubMed ID: 33631192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kainate receptor physiology.
    Lerma J
    Curr Opin Pharmacol; 2006 Feb; 6(1):89-97. PubMed ID: 16361114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CaMKII-dependent phosphorylation of GluK5 mediates plasticity of kainate receptors.
    Carta M; Opazo P; Veran J; Athané A; Choquet D; Coussen F; Mulle C
    EMBO J; 2013 Feb; 32(4):496-510. PubMed ID: 23288040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabotropic actions of kainate receptors in the control of GABA release.
    Sihra TS; Rodríguez-Moreno A
    Adv Exp Med Biol; 2011; 717():1-10. PubMed ID: 21713662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabotropic actions of kainate receptors in the control of glutamate release in the hippocampus.
    Rodríguez-Moreno A; Sihra TS
    Adv Exp Med Biol; 2011; 717():39-48. PubMed ID: 21713665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gating and permeation of kainate receptors: differences unveiled.
    Perrais D; Veran J; Mulle C
    Trends Pharmacol Sci; 2010 Nov; 31(11):516-22. PubMed ID: 20850188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.