BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25506750)

  • 1. Impact of microbial count distributions on human health risk estimates.
    Duarte AS; Nauta MJ
    Int J Food Microbiol; 2015 Feb; 195():48-57. PubMed ID: 25506750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fitting a distribution to microbial counts: making sense of zeroes.
    Duarte AS; Stockmarr A; Nauta MJ
    Int J Food Microbiol; 2015 Mar; 196():40-50. PubMed ID: 25522056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling homogeneous and heterogeneous microbial contaminations in a powdered food product.
    Jongenburger I; Reij MW; Boer EP; Zwietering MH; Gorris LG
    Int J Food Microbiol; 2012 Jun; 157(1):35-44. PubMed ID: 22591548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk based microbiological criteria for Campylobacter in broiler meat in the European Union.
    Nauta MJ; Sanaa M; Havelaar AH
    Int J Food Microbiol; 2012 Sep; 158(3):209-17. PubMed ID: 22877637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Count data distributions and their zero-modified equivalents as a framework for modelling microbial data with a relatively high occurrence of zero counts.
    Gonzales-Barron U; Kerr M; Sheridan JJ; Butler F
    Int J Food Microbiol; 2010 Jan; 136(3):268-77. PubMed ID: 19913934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for fitting a parametric probability distribution to most probable number data.
    Williams MS; Ebel ED
    Int J Food Microbiol; 2012 Jul; 157(2):251-8. PubMed ID: 22658686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human risk from thermotolerant Campylobacter on broiler meat in Denmark.
    Boysen L; Nauta M; Duarte AS; Rosenquist H
    Int J Food Microbiol; 2013 Mar; 162(2):129-34. PubMed ID: 23416547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of consumer phase models in microbial risk analysis.
    Nauta M; Christensen B
    Risk Anal; 2011 Feb; 31(2):255-65. PubMed ID: 20738819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full Bayes Poisson gamma, Poisson lognormal, and zero inflated random effects models: Comparing the precision of crash frequency estimates.
    Aguero-Valverde J
    Accid Anal Prev; 2013 Jan; 50():289-97. PubMed ID: 22633143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.
    Nilsen V; Wyller J
    Risk Anal; 2016 Jan; 36(1):163-81. PubMed ID: 26812258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Generalized QMRA Beta-Poisson Dose-Response Model.
    Xie G; Roiko A; Stratton H; Lemckert C; Dunn PK; Mengersen K
    Risk Anal; 2016 Oct; 36(10):1948-1958. PubMed ID: 26849688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of clones among hosts for the lizard malaria parasite
    Neal AT
    PeerJ; 2021; 9():e12448. PubMed ID: 34760403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses.
    Tang W; Lu N; Chen T; Wang W; Gunzler DD; Han Y; Tu XM
    Stat Med; 2015 Oct; 34(24):3235-45. PubMed ID: 26078035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the use of zero-inflated and hurdle models for modeling vaccine adverse event count data.
    Rose CE; Martin SW; Wannemuehler KA; Plikaytis BD
    J Biopharm Stat; 2006; 16(4):463-81. PubMed ID: 16892908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.
    Schmidt PJ; Pintar KD; Fazil AM; Topp E
    Risk Anal; 2013 Sep; 33(9):1677-93. PubMed ID: 23311599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear mixed-effects modeling of longitudinal count data: Bayesian inference about median counts based on the marginal zero-inflated discrete Weibull distribution.
    Burger DA; Lesaffre E
    Stat Med; 2021 Oct; 40(23):5078-5095. PubMed ID: 34155664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of Absence: Bayesian Way to Reveal True Zeros Among Occupational Exposures.
    Lavoue J; Burstyn I
    Ann Work Expo Health; 2021 Jan; 65(1):84-95. PubMed ID: 32914163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Different Calculation Approaches for Defining Microbiological Control Levels Based on Historical Data.
    Gordon O; Goverde M; Pazdan J; Staerk A; Roesti D
    PDA J Pharm Sci Technol; 2015; 69(3):383-98. PubMed ID: 26048745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data fitting approach more critical than exposure scenarios and treatment of censored data for quantitative microbial risk assessment.
    Poma HR; Kundu A; Wuertz S; Rajal VB
    Water Res; 2019 May; 154():45-53. PubMed ID: 30771706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative risk assessment of human campylobacteriosis by consumption of salad cross-contaminated with thermophilic Campylobacter spp. from broiler meat in Argentina.
    Signorini ML; Zbrun MV; Romero-Scharpen A; Olivero C; Bongiovanni F; Soto LP; Frizzo LS; Rosmini MR
    Prev Vet Med; 2013 Apr; 109(1-2):37-46. PubMed ID: 23044474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.