These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25509954)

  • 21. Performance of very shallow ponds treating effluents from UASB reactors.
    von Sperling M; Mascarenhas LC
    Water Sci Technol; 2005; 51(12):83-90. PubMed ID: 16114667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic reactor/high rate pond combined technology for sewage treatment in the Mediterranean area.
    El Hafiane F; El Hamouri B
    Water Sci Technol; 2005; 51(12):125-32. PubMed ID: 16114674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal efficiency and methanogenic activity profiles in a pilot-scale UASB reactor treating settled sewage at moderate temperatures.
    Seghezzo L; Guerra RG; González SM; Trupiano AP; Figueroa ME; Cuevas CM; Zeeman G; Lettinga G
    Water Sci Technol; 2002; 45(10):243-8. PubMed ID: 12188552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of hydraulic load distribution on sewage treatment efficiency of earthworm bio-filter].
    Yang J; Yang J; Yang JC; Chen QY; Lou SJ
    Huan Jing Ke Xue; 2008 Jul; 29(7):1890-6. PubMed ID: 18828372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of operational conditions on the performance of UASB reactors for domestic wastewater treatment.
    Leitão RC; Silva-Filho JA; Sanders W; van Haandel AC; Zeeman G; Lettinga G
    Water Sci Technol; 2005; 52(1-2):299-305. PubMed ID: 16180442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anaerobic treatment of strong sewage by a two stage system of AF and UASB reactors.
    Sawajneh Z; Al-Omari A; Halalsheh M
    Water Sci Technol; 2010; 61(9):2399-406. PubMed ID: 20418638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Treatment of strong domestic sewage in a 96 m3 UASB reactor operated at ambient temperatures: two-stage versus single-stage reactor.
    Halalsheh M; Sawajneh Z; Zu'bi M; Zeeman G; Lier J; Fayyad M; Lettinga G
    Bioresour Technol; 2005 Mar; 96(5):577-85. PubMed ID: 15501665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Treatment of domestic sewage in a combined UASB/RBC system. Process optimization for irrigation purposes.
    Tawfik A; Zeeman G; Klapwijk A; Sanders W; El-Gohary F; Lettinga G
    Water Sci Technol; 2003; 48(1):131-8. PubMed ID: 12926629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of microaeration bioreactor on dissolved sulfide and methane removal from real UASB effluent for sewage treatment.
    Cabral CS; Sanson AL; Afonso RJCF; Chernicharo CAL; Araújo JC
    Water Sci Technol; 2020 May; 81(9):1951-1960. PubMed ID: 32666948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous organic stabilization and nitrogen removal in multi-stage biodrum system.
    Chiemchaisri C; Liamsangoun C
    Water Sci Technol; 2004; 50(6):95-101. PubMed ID: 15536995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Post-treatment of anaerobic effluents in an overland flow system.
    Chernicharo CA; Cota RS; Zerbini AM; von Sperling M; Brito LH
    Water Sci Technol; 2001; 44(4):229-36. PubMed ID: 11579922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Treatment of anaerobically treated domestic wastewater using rotating biological contactor.
    Tawfik A; Klapwijk B; El-Gohary F; Lettinga G
    Water Sci Technol; 2002; 45(10):371-6. PubMed ID: 12188573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Behaviour of pharmaceuticals and endocrine disrupting chemicals in simplified sewage treatment systems.
    Brandt EM; de Queiroz FB; Afonso RJ; Aquino SF; Chernicharo CA
    J Environ Manage; 2013 Oct; 128():718-26. PubMed ID: 23850766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture.
    Mohapatra DP; Ghangrekar MM; Mitra A; Brar SK
    Environ Technol; 2012 Jun; 33(10-12):1445-53. PubMed ID: 22856320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen removal from domestic effluent using subsurface flow constructed wetlands: influence of depth, hydraulic residence time and pre-nitrification.
    Bayley ML; Davison L; Headley TR
    Water Sci Technol; 2003; 48(5):175-82. PubMed ID: 14621162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative study of the microbial quality of greywater treated by three on-site treatment systems.
    Friedler E; Kovalio R; Ben-Zvi A
    Environ Technol; 2006 Jun; 27(6):653-63. PubMed ID: 16865921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimizing nitrogen removal in the BioDenitro process.
    Irizar I; Suescun J; Plaza F; Larrea L
    Water Sci Technol; 2003; 48(11-12):429-36. PubMed ID: 14753565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Municipal wastewater treatment through an aerobic biofilm SBR integrated with a submerged filtration bed.
    Yang K; He J; Dougherty M; Yang X; Li L
    Water Sci Technol; 2009; 59(5):917-26. PubMed ID: 19273890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Biological Aerated Filter (BAF) as alternative treatment for domestic sewage. Optimization of plant performance.
    Farabegoli G; Chiavola A; Rolle E
    J Hazard Mater; 2009 Nov; 171(1-3):1126-32. PubMed ID: 19631453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of dissolved oxygen conditions on nitrogen removal in continuously fed intermittent-aeration process with two tanks.
    Hidaka T; Yamada H; Kawamura M; Tsuno H
    Water Sci Technol; 2002; 45(12):181-8. PubMed ID: 12201101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.