BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25509984)

  • 1. Gold-Gold Sulfide nanoparticles intensify thermal effects of radio frequency electromagnetic field.
    Sadeghi HR; Toosi MH; Soudmand S; Sadoughi HR; Sazgarnia A
    J Exp Ther Oncol; 2014; 10(4):285-91. PubMed ID: 25509984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold-gold sulfide nanoshell as a novel intensifier for anti-tumor effects of radiofrequency fields.
    Sadeghi HR; Bahreyni-Toosi MH; Meybodi NT; Esmaily H; Soudmand S; Eshghi H; Soudmand S; Sazgarnia A
    Iran J Basic Med Sci; 2014 Jul; 17(7):516-21. PubMed ID: 25429343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Effect Between Laser and Radiofrequency Heating of RGD-Gold Nanospheres on MCF7 Cell Viability.
    Sánchez-Hernández L; Ferro-Flores G; Jiménez-Mancilla NP; Luna-Gutiérrez MA; Santos-Cuevas CL; Ocampo-García BE; Azorín-Vega E; Isaac-Olivé K
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9840-8. PubMed ID: 26682422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles.
    Curley SA; Cherukuri P; Briggs K; Patra CR; Upton M; Dolson E; Mukherjee P
    J Exp Ther Oncol; 2008; 7(4):313-26. PubMed ID: 19227011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz).
    Winter L; Oezerdem C; Hoffmann W; van de Lindt T; Periquito J; Ji Y; Ghadjar P; Budach V; Wust P; Niendorf T
    Radiat Oncol; 2015 Sep; 10():201. PubMed ID: 26391138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiofrequency electric field hyperthermia with gold nanostructures: role of particle shape and surface chemistry.
    Amini SM; Kharrazi S; Rezayat SM; Gilani K
    Artif Cells Nanomed Biotechnol; 2018 Nov; 46(7):1452-1462. PubMed ID: 28891351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the heating properties of platinum nanoparticles under a radiofrequency current.
    San BH; Moh SH; Kim KK
    Int J Hyperthermia; 2013; 29(2):99-105. PubMed ID: 23350813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors.
    Beik J; Abed Z; Ghadimi-Daresajini A; Nourbakhsh M; Shakeri-Zadeh A; Ghasemi MS; Shiran MB
    J Therm Biol; 2016 Dec; 62(Pt A):84-89. PubMed ID: 27839555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells.
    Cherukuri P; Curley SA
    Methods Mol Biol; 2010; 624():359-73. PubMed ID: 20217608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low frequency heating of gold nanoparticle dispersions for non-invasive thermal therapies.
    Liu X; Chen HJ; Chen X; Parini C; Wen D
    Nanoscale; 2012 Jul; 4(13):3945-53. PubMed ID: 22622412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A radio-frequency coupling network for heating of citrate-coated gold nanoparticles for cancer therapy: design and analysis.
    Kruse DE; Stephens DN; Lindfors HA; Ingham ES; Paoli EE; Ferrara KW
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):2002-12. PubMed ID: 21402506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticle-based sensors activated by external radio frequency fields.
    Vedova PD; Ilieva M; Zhurbenko V; Mateiu R; Faralli A; Dufva M; Hansen O
    Small; 2015 Jan; 11(2):248-56. PubMed ID: 25180655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs.
    Repacholi MH
    Bioelectromagnetics; 1998; 19(1):1-19. PubMed ID: 9453702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia.
    Bellizzi G; Bucci OM
    Int J Hyperthermia; 2010; 26(4):389-403. PubMed ID: 20210609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor cure and cell survival after localized radiofrequency heating.
    Marmor JB; Hahn N; Hahn GM
    Cancer Res; 1977 Mar; 37(3):879-83. PubMed ID: 837383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted cancer therapy by immunoconjugated gold-gold sulfide nanoparticles using Protein G as a cofactor.
    Sun X; Zhang G; Patel D; Stephens D; Gobin AM
    Ann Biomed Eng; 2012 Oct; 40(10):2131-9. PubMed ID: 22532323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of microwave hyperthermia and chemotherapy in the presence of gold nanoparticles: an in vitro study on osteosarcoma.
    Ghahremani FH; Sazgarnia A; Bahreyni-Toosi MH; Rajabi O; Aledavood A
    Int J Hyperthermia; 2011; 27(6):625-36. PubMed ID: 21846198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 'Smart' gold nanoshells for combined cancer chemotherapy and hyperthermia.
    Liang Z; Li X; Xie Y; Liu S
    Biomed Mater; 2014 Apr; 9(2):025012. PubMed ID: 24525482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of absorption of radio frequency field by gold nanoparticles and nanoclusters in biological medium.
    Narasimh An AK; Chakaravarthi G; Rao MSR; Arunachalam K
    Electromagn Biol Med; 2020 Jul; 39(3):183-195. PubMed ID: 32408843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of cell and nanoparticle properties on heating and cell death in a radiofrequency field.
    Mackeyev Y; Mark C; Kumar N; Serda RE
    Acta Biomater; 2017 Apr; 53():619-630. PubMed ID: 28179157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.