BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25510177)

  • 1. A robust generic method for grid detection in white light microscopy Malassez blade images in the context of cell counting.
    Marin A; Denimal E; Guyot S; Journaux L; Molin P
    Microsc Microanal; 2015 Feb; 21(1):239-48. PubMed ID: 25510177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliable Detection and Smart Deletion of Malassez Counting Chamber Grid in Microscopic White Light Images for Microbiological Applications.
    Denimal E; Marin A; Guyot S; Journaux L; Molin P
    Microsc Microanal; 2015 Aug; 21(4):886-92. PubMed ID: 26072694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Biological Cell Counting Using a Modified Gradient Hough Transform.
    Denimal E; Marin A; Guyot S; Journaux L; Molin P
    Microsc Microanal; 2017 Feb; 23(1):11-21. PubMed ID: 28143631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel segmentation-based algorithm for the quantification of magnified cells.
    Thompson GC; Ireland TA; Larkin XE; Arnold J; Holsinger RM
    J Cell Biochem; 2014 Nov; 115(11):1849-54. PubMed ID: 25043374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust ellipse detection based on hierarchical image pyramid and Hough transform.
    Chien CF; Cheng YC; Lin TT
    J Opt Soc Am A Opt Image Sci Vis; 2011 Apr; 28(4):581-9. PubMed ID: 21478953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving reliability of live/dead cell counting through automated image mosaicing.
    Piccinini F; Tesei A; Paganelli G; Zoli W; Bevilacqua A
    Comput Methods Programs Biomed; 2014 Dec; 117(3):448-63. PubMed ID: 25438936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of two automatic cell-counting solutions for fluorescent microscopic images.
    Lojk J; Čibej U; Karlaš D; Šajn L; Pavlin M
    J Microsc; 2015 Oct; 260(1):107-16. PubMed ID: 26098834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and implementation of algorithms for focus automation in digital imaging time-lapse microscopy.
    LeSage AJ; Kron SJ
    Cytometry; 2002 Dec; 49(4):159-69. PubMed ID: 12454979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and red blood cell automated counting from blood smear images using computer-aided system.
    Acharya V; Kumar P
    Med Biol Eng Comput; 2018 Mar; 56(3):483-489. PubMed ID: 28815426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphometric quantification of a pseudohyphae forming Saccharomyces cerevisiae strain using in situ microscopy and image analysis.
    Belini VL; Junior OM; Ceccato-Antonini SR; Suhr H; Wiedemann P
    J Microbiol Methods; 2021 Nov; 190():106338. PubMed ID: 34597736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation of cervical cell nuclei in high-resolution microscopic images: A new algorithm and a web-based software framework.
    Bergmeir C; García Silvente M; Benítez JM
    Comput Methods Programs Biomed; 2012 Sep; 107(3):497-512. PubMed ID: 22306072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated cell colony counting and analysis using the circular Hough image transform algorithm (CHiTA).
    Bewes JM; Suchowerska N; McKenzie DR
    Phys Med Biol; 2008 Nov; 53(21):5991-6008. PubMed ID: 18836215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ microscopy: a perspective for industrial bioethanol production monitoring.
    Belini VL; Wiedemann P; Suhr H
    J Microbiol Methods; 2013 Jun; 93(3):224-32. PubMed ID: 23524154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning approach to discriminate Saccharomyces cerevisiae yeast cells using sophisticated image features.
    Tleis MS; Verbeek FJ
    J Integr Bioinform; 2015 Oct; 12(3):276. PubMed ID: 26673792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of cell, actin, and nuclear DNA morphology with high-throughput microscopy and CalMorph.
    Okada H; Ohnuki S; Ohya Y
    Cold Spring Harb Protoc; 2015 Apr; 2015(4):408-12. PubMed ID: 25834262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip.
    Yang Yu B; Elbuken C; Ren CL; Huissoon JP
    J Biomed Opt; 2011 Jun; 16(6):066008. PubMed ID: 21721809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the Hough transform for the automatic determination of soot aggregate morphology.
    Grishin I; Thomson K; Migliorini F; Sloan JJ
    Appl Opt; 2012 Feb; 51(5):610-20. PubMed ID: 22330294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation of yeast cell's bright-field image with an edge-tracing algorithm.
    Wang L; Li S; Sun Z; Wen G; Zheng F; Fu C; Li H
    J Biomed Opt; 2018 Nov; 23(11):1-7. PubMed ID: 30456935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of image segmentation algorithms on microscopic image data.
    Beneš M; Zitová B
    J Microsc; 2015 Jan; 257(1):65-85. PubMed ID: 25233873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Point counting on the Macintosh. A semiautomated image analysis technique.
    Gatlin CL; Schaberg ES; Jordan WH; Kuyatt BL; Smith WC
    Anal Quant Cytol Histol; 1993 Oct; 15(5):345-50. PubMed ID: 8259976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.