These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25510177)

  • 1. A robust generic method for grid detection in white light microscopy Malassez blade images in the context of cell counting.
    Marin A; Denimal E; Guyot S; Journaux L; Molin P
    Microsc Microanal; 2015 Feb; 21(1):239-48. PubMed ID: 25510177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliable Detection and Smart Deletion of Malassez Counting Chamber Grid in Microscopic White Light Images for Microbiological Applications.
    Denimal E; Marin A; Guyot S; Journaux L; Molin P
    Microsc Microanal; 2015 Aug; 21(4):886-92. PubMed ID: 26072694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Biological Cell Counting Using a Modified Gradient Hough Transform.
    Denimal E; Marin A; Guyot S; Journaux L; Molin P
    Microsc Microanal; 2017 Feb; 23(1):11-21. PubMed ID: 28143631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel segmentation-based algorithm for the quantification of magnified cells.
    Thompson GC; Ireland TA; Larkin XE; Arnold J; Holsinger RM
    J Cell Biochem; 2014 Nov; 115(11):1849-54. PubMed ID: 25043374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust ellipse detection based on hierarchical image pyramid and Hough transform.
    Chien CF; Cheng YC; Lin TT
    J Opt Soc Am A Opt Image Sci Vis; 2011 Apr; 28(4):581-9. PubMed ID: 21478953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving reliability of live/dead cell counting through automated image mosaicing.
    Piccinini F; Tesei A; Paganelli G; Zoli W; Bevilacqua A
    Comput Methods Programs Biomed; 2014 Dec; 117(3):448-63. PubMed ID: 25438936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of two automatic cell-counting solutions for fluorescent microscopic images.
    Lojk J; Čibej U; Karlaš D; Šajn L; Pavlin M
    J Microsc; 2015 Oct; 260(1):107-16. PubMed ID: 26098834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and implementation of algorithms for focus automation in digital imaging time-lapse microscopy.
    LeSage AJ; Kron SJ
    Cytometry; 2002 Dec; 49(4):159-69. PubMed ID: 12454979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and red blood cell automated counting from blood smear images using computer-aided system.
    Acharya V; Kumar P
    Med Biol Eng Comput; 2018 Mar; 56(3):483-489. PubMed ID: 28815426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphometric quantification of a pseudohyphae forming Saccharomyces cerevisiae strain using in situ microscopy and image analysis.
    Belini VL; Junior OM; Ceccato-Antonini SR; Suhr H; Wiedemann P
    J Microbiol Methods; 2021 Nov; 190():106338. PubMed ID: 34597736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation of cervical cell nuclei in high-resolution microscopic images: A new algorithm and a web-based software framework.
    Bergmeir C; García Silvente M; Benítez JM
    Comput Methods Programs Biomed; 2012 Sep; 107(3):497-512. PubMed ID: 22306072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated cell colony counting and analysis using the circular Hough image transform algorithm (CHiTA).
    Bewes JM; Suchowerska N; McKenzie DR
    Phys Med Biol; 2008 Nov; 53(21):5991-6008. PubMed ID: 18836215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ microscopy: a perspective for industrial bioethanol production monitoring.
    Belini VL; Wiedemann P; Suhr H
    J Microbiol Methods; 2013 Jun; 93(3):224-32. PubMed ID: 23524154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning approach to discriminate Saccharomyces cerevisiae yeast cells using sophisticated image features.
    Tleis MS; Verbeek FJ
    J Integr Bioinform; 2015 Oct; 12(3):276. PubMed ID: 26673792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of cell, actin, and nuclear DNA morphology with high-throughput microscopy and CalMorph.
    Okada H; Ohnuki S; Ohya Y
    Cold Spring Harb Protoc; 2015 Apr; 2015(4):408-12. PubMed ID: 25834262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip.
    Yang Yu B; Elbuken C; Ren CL; Huissoon JP
    J Biomed Opt; 2011 Jun; 16(6):066008. PubMed ID: 21721809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the Hough transform for the automatic determination of soot aggregate morphology.
    Grishin I; Thomson K; Migliorini F; Sloan JJ
    Appl Opt; 2012 Feb; 51(5):610-20. PubMed ID: 22330294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation of yeast cell's bright-field image with an edge-tracing algorithm.
    Wang L; Li S; Sun Z; Wen G; Zheng F; Fu C; Li H
    J Biomed Opt; 2018 Nov; 23(11):1-7. PubMed ID: 30456935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of image segmentation algorithms on microscopic image data.
    Beneš M; Zitová B
    J Microsc; 2015 Jan; 257(1):65-85. PubMed ID: 25233873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Point counting on the Macintosh. A semiautomated image analysis technique.
    Gatlin CL; Schaberg ES; Jordan WH; Kuyatt BL; Smith WC
    Anal Quant Cytol Histol; 1993 Oct; 15(5):345-50. PubMed ID: 8259976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.