These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25510226)

  • 1. Letter to the Editor on 'Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle'.
    Billings SA; Schlesinger WH
    Glob Chang Biol; 2015 Aug; 21(8):2831. PubMed ID: 25510226
    [No Abstract]   [Full Text] [Related]  

  • 2. Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle.
    Santín C; Doerr SH; Preston CM; González-Rodríguez G
    Glob Chang Biol; 2015 Apr; 21(4):1621-33. PubMed ID: 25378275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrogenic organic matter produced during wildfires can act as a carbon sink - a reply to Billings & Schlesinger (2015).
    Santín C; Doerr SH; Preston CM; González-Rodríguez G
    Glob Chang Biol; 2018 Feb; 24(2):e399. PubMed ID: 25677984
    [No Abstract]   [Full Text] [Related]  

  • 4. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO
    Landry JS; Matthews HD
    Glob Chang Biol; 2017 Aug; 23(8):3205-3218. PubMed ID: 27992954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a global assessment of pyrogenic carbon from vegetation fires.
    Santín C; Doerr SH; Kane ES; Masiello CA; Ohlson M; de la Rosa JM; Preston CM; Dittmar T
    Glob Chang Biol; 2016 Jan; 22(1):76-91. PubMed ID: 26010729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of biomass burning on atmospheric aerosols over the western South China Sea: Insights from ions, carbonaceous fractions and stable carbon isotope ratios.
    Song J; Zhao Y; Zhang Y; Fu P; Zheng L; Yuan Q; Wang S; Huang X; Xu W; Cao Z; Gromov S; Lai S
    Environ Pollut; 2018 Nov; 242(Pt B):1800-1809. PubMed ID: 30093156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.
    Turcios MM; Jaramillo MM; do Vale JF; Fearnside PM; Barbosa RI
    Glob Chang Biol; 2016 Jan; 22(1):190-7. PubMed ID: 26207816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability.
    Soong JL; Cotrufo MF
    Glob Chang Biol; 2015 Jun; 21(6):2321-33. PubMed ID: 25487951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of climate change on forest soil organic carbon storage: a review].
    Zhou XY; Zhang CY; Guo GF
    Ying Yong Sheng Tai Xue Bao; 2010 Jul; 21(7):1867-74. PubMed ID: 20879549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences between a deciduous and a conifer tree species in gaseous and particulate emissions from biomass burning.
    Pallozzi E; Lusini I; Cherubini L; Hajiaghayeva RA; Ciccioli P; Calfapietra C
    Environ Pollut; 2018 Mar; 234():457-467. PubMed ID: 29207297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil carbon and nitrogen storage in response to fire in a temperate mixed-grass savanna.
    Dai X; Boutton TW; Hailemichael M; Ansley RJ; Jessup KE
    J Environ Qual; 2006; 35(4):1620-8. PubMed ID: 16825482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Distribution characteristics of soil organic carbon of burned area under different restorations.].
    Li HY; Xin Y; Zhao YS
    Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):2747-2753. PubMed ID: 29732835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentially Massive and Global Non-Pyrogenic Production of Condensed "Black" Carbon through Biomass Oxidation.
    Goranov AI; Chen H; Duan J; Myneni SCB; Hatcher PG
    Environ Sci Technol; 2024 Feb; 58(6):2750-2761. PubMed ID: 38294931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of plant process on soil organic carbon concentration].
    Li H; Shi K; Xu D
    Ying Yong Sheng Tai Xue Bao; 2005 Jun; 16(6):1163-8. PubMed ID: 16180775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil properties and root biomass responses to prescribed burning in young Corsican pine (Pinus nigra Arn.) stands.
    Tufekcioglu A; Kucuk M; Saglam B; Bilgili E; Altun L
    J Environ Biol; 2010 May; 31(3):369-73. PubMed ID: 21047013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Guo M; Li J; Xu J; Wang X; He H; Wu L
    Environ Pollut; 2017 Jul; 226():60-68. PubMed ID: 28407537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry.
    Tfaily MM; Chu RK; Toyoda J; Tolić N; Robinson EW; Paša-Tolić L; Hess NJ
    Anal Chim Acta; 2017 Jun; 972():54-61. PubMed ID: 28495096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.).
    Sakici OE; Kucuk O; Ashraf MI
    Environ Monit Assess; 2018 Apr; 190(5):285. PubMed ID: 29658095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-polar organic compounds in marine aerosols over the northern South China Sea: Influence of continental outflow.
    Zhao Y; Zhang Y; Fu P; Ho SS; Ho KF; Liu F; Zou S; Wang S; Lai S
    Chemosphere; 2016 Jun; 153():332-9. PubMed ID: 27023121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overestimates of black carbon in soils and sediments.
    Simpson MJ; Hatcher PG
    Naturwissenschaften; 2004 Sep; 91(9):436-40. PubMed ID: 15278224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.