These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

642 related articles for article (PubMed ID: 25510491)

  • 1. PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration.
    Crappé J; Ndah E; Koch A; Steyaert S; Gawron D; De Keulenaer S; De Meester E; De Meyer T; Van Criekinge W; Van Damme P; Menschaert G
    Nucleic Acids Res; 2015 Mar; 43(5):e29. PubMed ID: 25510491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms.
    Verbruggen S; Ndah E; Van Criekinge W; Gessulat S; Kuster B; Wilhelm M; Van Damme P; Menschaert G
    Mol Cell Proteomics; 2019 Aug; 18(8 suppl 1):S126-S140. PubMed ID: 31040227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal profiling adds new coding sequences to the proteome.
    Mumtaz MA; Couso JP
    Biochem Soc Trans; 2015 Dec; 43(6):1271-6. PubMed ID: 26614672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events.
    Menschaert G; Van Criekinge W; Notelaers T; Koch A; Crappé J; Gevaert K; Van Damme P
    Mol Cell Proteomics; 2013 Jul; 12(7):1780-90. PubMed ID: 23429522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translation start sites.
    Koch A; Gawron D; Steyaert S; Ndah E; Crappé J; De Keulenaer S; De Meester E; Ma M; Shen B; Gevaert K; Van Criekinge W; Van Damme P; Menschaert G
    Proteomics; 2014 Dec; 14(23-24):2688-98. PubMed ID: 25156699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Ribosome Positioning on Translating Transcripts with Ribosome Profiling.
    Spealman P; Wang H; May G; Kingsford C; McManus CJ
    Methods Mol Biol; 2016; 1358():71-97. PubMed ID: 26463378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GWIPS-viz as a tool for exploring ribosome profiling evidence supporting the synthesis of alternative proteoforms.
    Michel AM; Ahern AM; Donohue CA; Baranov PV
    Proteomics; 2015 Jul; 15(14):2410-6. PubMed ID: 25736862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proteome under translational control.
    Gawron D; Gevaert K; Van Damme P
    Proteomics; 2014 Dec; 14(23-24):2647-62. PubMed ID: 25263132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting actively translated open reading frames in ribosome profiling data.
    Calviello L; Mukherjee N; Wyler E; Zauber H; Hirsekorn A; Selbach M; Landthaler M; Obermayer B; Ohler U
    Nat Methods; 2016 Feb; 13(2):165-70. PubMed ID: 26657557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation Analysis at the Genome Scale by Ribosome Profiling.
    Baudin-Baillieu A; Hatin I; Legendre R; Namy O
    Methods Mol Biol; 2016; 1361():105-24. PubMed ID: 26483019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
    Janich P; Arpat AB; Castelo-Szekely V; Lopes M; Gatfield D
    Genome Res; 2015 Dec; 25(12):1848-59. PubMed ID: 26486724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of translation start sites may define increased complexity of the human short ORFeome.
    Oyama M; Kozuka-Hata H; Suzuki Y; Semba K; Yamamoto T; Sugano S
    Mol Cell Proteomics; 2007 Jun; 6(6):1000-6. PubMed ID: 17317662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteogenomics from a bioinformatics angle: A growing field.
    Menschaert G; Fenyö D
    Mass Spectrom Rev; 2017 Sep; 36(5):584-599. PubMed ID: 26670565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian prediction of RNA translation from ribosome profiling.
    Malone B; Atanassov I; Aeschimann F; Li X; Großhans H; Dieterich C
    Nucleic Acids Res; 2017 Apr; 45(6):2960-2972. PubMed ID: 28126919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide translational profiling by ribosome footprinting.
    Ingolia NT
    Methods Enzymol; 2010; 470():119-42. PubMed ID: 20946809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosome profiling: a tool for quantitative evaluation of dynamics in mRNA translation.
    Juntawong P; Hummel M; Bazin J; Bailey-Serres J
    Methods Mol Biol; 2015; 1284():139-73. PubMed ID: 25757771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoform-Level Interpretation of High-Throughput Proteomics Data Enabled by Deep Integration with RNA-seq.
    Carlyle BC; Kitchen RR; Zhang J; Wilson RS; Lam TT; Rozowsky JS; Williams KR; Sestan N; Gerstein MB; Nairn AC
    J Proteome Res; 2018 Oct; 17(10):3431-3444. PubMed ID: 30125121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale.
    Michel AM; Baranov PV
    Wiley Interdiscip Rev RNA; 2013; 4(5):473-90. PubMed ID: 23696005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosome Profiling of Vaccinia Virus-Infected Cells.
    Lin Y; Qiao W; Yang Z
    Methods Mol Biol; 2019; 2023():171-188. PubMed ID: 31240678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of small human proteins reveals the translation of upstream open reading frames of mRNAs.
    Oyama M; Itagaki C; Hata H; Suzuki Y; Izumi T; Natsume T; Isobe T; Sugano S
    Genome Res; 2004 Oct; 14(10B):2048-52. PubMed ID: 15489325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.