BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 25510491)

  • 1. PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration.
    Crappé J; Ndah E; Koch A; Steyaert S; Gawron D; De Keulenaer S; De Meester E; De Meyer T; Van Criekinge W; Van Damme P; Menschaert G
    Nucleic Acids Res; 2015 Mar; 43(5):e29. PubMed ID: 25510491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms.
    Verbruggen S; Ndah E; Van Criekinge W; Gessulat S; Kuster B; Wilhelm M; Van Damme P; Menschaert G
    Mol Cell Proteomics; 2019 Aug; 18(8 suppl 1):S126-S140. PubMed ID: 31040227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal profiling adds new coding sequences to the proteome.
    Mumtaz MA; Couso JP
    Biochem Soc Trans; 2015 Dec; 43(6):1271-6. PubMed ID: 26614672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events.
    Menschaert G; Van Criekinge W; Notelaers T; Koch A; Crappé J; Gevaert K; Van Damme P
    Mol Cell Proteomics; 2013 Jul; 12(7):1780-90. PubMed ID: 23429522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translation start sites.
    Koch A; Gawron D; Steyaert S; Ndah E; Crappé J; De Keulenaer S; De Meester E; Ma M; Shen B; Gevaert K; Van Criekinge W; Van Damme P; Menschaert G
    Proteomics; 2014 Dec; 14(23-24):2688-98. PubMed ID: 25156699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Ribosome Positioning on Translating Transcripts with Ribosome Profiling.
    Spealman P; Wang H; May G; Kingsford C; McManus CJ
    Methods Mol Biol; 2016; 1358():71-97. PubMed ID: 26463378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GWIPS-viz as a tool for exploring ribosome profiling evidence supporting the synthesis of alternative proteoforms.
    Michel AM; Ahern AM; Donohue CA; Baranov PV
    Proteomics; 2015 Jul; 15(14):2410-6. PubMed ID: 25736862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proteome under translational control.
    Gawron D; Gevaert K; Van Damme P
    Proteomics; 2014 Dec; 14(23-24):2647-62. PubMed ID: 25263132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting actively translated open reading frames in ribosome profiling data.
    Calviello L; Mukherjee N; Wyler E; Zauber H; Hirsekorn A; Selbach M; Landthaler M; Obermayer B; Ohler U
    Nat Methods; 2016 Feb; 13(2):165-70. PubMed ID: 26657557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation Analysis at the Genome Scale by Ribosome Profiling.
    Baudin-Baillieu A; Hatin I; Legendre R; Namy O
    Methods Mol Biol; 2016; 1361():105-24. PubMed ID: 26483019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
    Janich P; Arpat AB; Castelo-Szekely V; Lopes M; Gatfield D
    Genome Res; 2015 Dec; 25(12):1848-59. PubMed ID: 26486724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of translation start sites may define increased complexity of the human short ORFeome.
    Oyama M; Kozuka-Hata H; Suzuki Y; Semba K; Yamamoto T; Sugano S
    Mol Cell Proteomics; 2007 Jun; 6(6):1000-6. PubMed ID: 17317662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteogenomics from a bioinformatics angle: A growing field.
    Menschaert G; Fenyö D
    Mass Spectrom Rev; 2017 Sep; 36(5):584-599. PubMed ID: 26670565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian prediction of RNA translation from ribosome profiling.
    Malone B; Atanassov I; Aeschimann F; Li X; Großhans H; Dieterich C
    Nucleic Acids Res; 2017 Apr; 45(6):2960-2972. PubMed ID: 28126919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide translational profiling by ribosome footprinting.
    Ingolia NT
    Methods Enzymol; 2010; 470():119-42. PubMed ID: 20946809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosome profiling: a tool for quantitative evaluation of dynamics in mRNA translation.
    Juntawong P; Hummel M; Bazin J; Bailey-Serres J
    Methods Mol Biol; 2015; 1284():139-73. PubMed ID: 25757771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoform-Level Interpretation of High-Throughput Proteomics Data Enabled by Deep Integration with RNA-seq.
    Carlyle BC; Kitchen RR; Zhang J; Wilson RS; Lam TT; Rozowsky JS; Williams KR; Sestan N; Gerstein MB; Nairn AC
    J Proteome Res; 2018 Oct; 17(10):3431-3444. PubMed ID: 30125121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale.
    Michel AM; Baranov PV
    Wiley Interdiscip Rev RNA; 2013; 4(5):473-90. PubMed ID: 23696005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosome Profiling of Vaccinia Virus-Infected Cells.
    Lin Y; Qiao W; Yang Z
    Methods Mol Biol; 2019; 2023():171-188. PubMed ID: 31240678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of small human proteins reveals the translation of upstream open reading frames of mRNAs.
    Oyama M; Itagaki C; Hata H; Suzuki Y; Izumi T; Natsume T; Isobe T; Sugano S
    Genome Res; 2004 Oct; 14(10B):2048-52. PubMed ID: 15489325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.