These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25510572)

  • 1. Cognitive training and assessment in robotic surgery - is it effective?
    Brunckhorst O; Ahmed K
    BJU Int; 2015 Jan; 115(1):5-7. PubMed ID: 25510572
    [No Abstract]   [Full Text] [Related]  

  • 2. Cognitive skills assessment during robot-assisted surgery: separating the wheat from the chaff.
    Guru KA; Esfahani ET; Raza SJ; Bhat R; Wang K; Hammond Y; Wilding G; Peabody JO; Chowriappa AJ
    BJU Int; 2015 Jan; 115(1):166-74. PubMed ID: 24467726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. American Board of Surgery Statement on Assessment and Robotic Surgery.
    Arca MJ; Adams RB; Angelos P; Fanelli RD; Mammen JMV; Nelson MT; Neumeister MW; Robinson AJ; Buyske J
    Am J Surg; 2021 Feb; 221(2):424-426. PubMed ID: 33097190
    [No Abstract]   [Full Text] [Related]  

  • 4. Effective non-technical skills are imperative to robot-assisted surgery.
    Brunckhorst O; Khan MS; Dasgupta P; Ahmed K
    BJU Int; 2015 Dec; 116(6):842-4. PubMed ID: 25220630
    [No Abstract]   [Full Text] [Related]  

  • 5. Da Vinci© Skills Simulator™: is an early selection of talented console surgeons possible?
    Meier M; Horton K; John H
    J Robot Surg; 2016 Dec; 10(4):289-296. PubMed ID: 27334771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools.
    Dubin AK; Smith R; Julian D; Tanaka A; Mattingly P
    J Minim Invasive Gynecol; 2017; 24(7):1184-1189. PubMed ID: 28757439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic networks: delivering empowerment through integration.
    Collins J; Akre O; Challacombe B; Karim O; Wiklund P
    BJU Int; 2015 Aug; 116(2):167-8. PubMed ID: 26202009
    [No Abstract]   [Full Text] [Related]  

  • 8. Transferability of Virtual Reality, Simulation-Based, Robotic Suturing Skills to a Live Porcine Model in Novice Surgeons: A Single-Blind Randomized Controlled Trial.
    Vargas MV; Moawad G; Denny K; Happ L; Misa NY; Margulies S; Opoku-Anane J; Abi Khalil E; Marfori C
    J Minim Invasive Gynecol; 2017; 24(3):420-425. PubMed ID: 28027975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotic surgery training: construct validity of Global Evaluative Assessment of Robotic Skills (GEARS).
    Sánchez R; Rodríguez O; Rosciano J; Vegas L; Bond V; Rojas A; Sanchez-Ismayel A
    J Robot Surg; 2016 Sep; 10(3):227-31. PubMed ID: 27039189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A query on da Vinci robot console preferences: insights for the novice surgeon.
    Sorokin I; Cadeddu JA
    J Robot Surg; 2017 Jun; 11(2):231-233. PubMed ID: 27844267
    [No Abstract]   [Full Text] [Related]  

  • 11. Virtual reality robotic surgery simulation curriculum to teach robotic suturing: a randomized controlled trial.
    Kiely DJ; Gotlieb WH; Lau S; Zeng X; Samouelian V; Ramanakumar AV; Zakrzewski H; Brin S; Fraser SA; Korsieporn P; Drudi L; Press JZ
    J Robot Surg; 2015 Sep; 9(3):179-86. PubMed ID: 26531197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Training the next generation of robotic surgeons using guided mentorship: a randomized controlled trial.
    Liang MI; McCann GA; Rath KS; Backes FJ; Cansino C; Salani R
    J Minim Invasive Gynecol; 2014; 21(6):1075-9. PubMed ID: 24893325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic-assisted microvascular surgery: skill acquisition in a rat model.
    Clarke NS; Price J; Boyd T; Salizzoni S; Zehr KJ; Nieponice A; Bajona P
    J Robot Surg; 2018 Jun; 12(2):331-336. PubMed ID: 28812257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training in Minimally Invasive Pancreatic Resections: a paradigm shift away from "See one, Do one, Teach one".
    Hogg ME; Besselink MG; Clavien PA; Fingerhut A; Jeyarajah DR; Kooby DA; Moser AJ; Pitt HA; Varban OA; Vollmer CM; Zeh HJ; Hansen P;
    HPB (Oxford); 2017 Mar; 19(3):234-245. PubMed ID: 28190709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Social Media as a Platform for Surgical Learning: Use and Engagement Patterns Among Robotic Surgeons.
    Myers CG; Kudsi OY; Ghaferi AA
    Ann Surg; 2018 Feb; 267(2):233-235. PubMed ID: 28857816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of training frequency on the learning curve on the da Vinci Skills Simulator.
    Walliczek U; Förtsch A; Dworschak P; Teymoortash A; Mandapathil M; Werner J; Güldner C
    Head Neck; 2016 Apr; 38 Suppl 1():E1762-9. PubMed ID: 26681572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Value of Learning Curve During Robotic Pancreaticoduodenectomy: Thoughts and Feelings.
    Marino MV
    Surg Innov; 2020 Feb; 27(1):124-125. PubMed ID: 31540561
    [No Abstract]   [Full Text] [Related]  

  • 18. Mastering Robotic Surgery: Where Does the Learning Curve Lead Us?
    Andolfi C; Umanskiy K
    J Laparoendosc Adv Surg Tech A; 2017 May; 27(5):470-474. PubMed ID: 28099055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hospital credentialing and privileging of surgeons: a potential safety blind spot.
    Pradarelli JC; Campbell DA; Dimick JB
    JAMA; 2015 Apr; 313(13):1313-4. PubMed ID: 25849177
    [No Abstract]   [Full Text] [Related]  

  • 20. Development and testing of a robotic surgical training curriculum for novice surgeons.
    Summers S; Anderson J; Petzel A; Tarr M; Kenton K
    J Robot Surg; 2015 Mar; 9(1):27-35. PubMed ID: 26530968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.