These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 25510598)
1. Improved delivery of the natural anticancer drug tetrandrine. Shi C; Ahmad Khan S; Wang K; Schneider M Int J Pharm; 2015 Feb; 479(1):41-51. PubMed ID: 25510598 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin. Liu R; Wang Y; Li X; Bao W; Xia G; Chen W; Cheng J; Xu Y; Guo L; Chen B Drug Des Devel Ther; 2015; 9():2705-19. PubMed ID: 26045659 [TBL] [Abstract][Full Text] [Related]
3. Effects of surfactants on the properties of PLGA nanoparticles. Menon JU; Kona S; Wadajkar AS; Desai F; Vadla A; Nguyen KT J Biomed Mater Res A; 2012 Aug; 100(8):1998-2005. PubMed ID: 22566409 [TBL] [Abstract][Full Text] [Related]
4. Multilayer Coating of Tetrandrine-loaded PLGA nanoparticles: Effect of surface charges on cellular uptake rate and drug release profile. Meng R; Li K; Chen Z; Shi C J Huazhong Univ Sci Technolog Med Sci; 2016 Feb; 36(1):14-20. PubMed ID: 26838734 [TBL] [Abstract][Full Text] [Related]
5. [Preparation and in vitro evaluation of tetrandrine-loaded composite microspheres embedded with PLGA nanoparticles]. Shi C; Meng R; Li K Zhongguo Zhong Yao Za Zhi; 2016 Mar; 41(5):838-844. PubMed ID: 28875636 [TBL] [Abstract][Full Text] [Related]
6. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Liu Y; Pan J; Feng SS Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of teniposide PLGA nanoparticles and their uptake in human glioblastoma U87MG cells. Mo L; Hou L; Guo D; Xiao X; Mao P; Yang X Int J Pharm; 2012 Oct; 436(1-2):815-24. PubMed ID: 22846410 [TBL] [Abstract][Full Text] [Related]
8. PLGA nanoparticles for oral delivery of hydrophobic drugs: influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. Sahana DK; Mittal G; Bhardwaj V; Kumar MN J Pharm Sci; 2008 Apr; 97(4):1530-42. PubMed ID: 17722098 [TBL] [Abstract][Full Text] [Related]
9. Surfactant-free poly(lactide-co-glycolide) nanoparticles for improving in vitro anticancer efficacy of tetrandrine. Shi C; Zeng F; Fu D J Microencapsul; 2016 May; 33(3):249-56. PubMed ID: 26961245 [TBL] [Abstract][Full Text] [Related]
10. Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization. Surassmo S; Saengkrit N; Ruktanonchai UR; Suktham K; Woramongkolchai N; Wutikhun T; Puttipipatkhachorn S Colloids Surf B Biointerfaces; 2015 Jun; 130():229-36. PubMed ID: 25937384 [TBL] [Abstract][Full Text] [Related]
11. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles. Gossmann R; Langer K; Mulac D PLoS One; 2015; 10(7):e0127532. PubMed ID: 26147338 [TBL] [Abstract][Full Text] [Related]
12. Targeted and controlled drug delivery system loading artersunate for effective chemotherapy on CD44 overexpressing cancer cells. Tran TH; Nguyen TD; Van Nguyen H; Nguyen HT; Kim JO; Yong CS; Nguyen CN Arch Pharm Res; 2016 May; 39(5):687-94. PubMed ID: 27015824 [TBL] [Abstract][Full Text] [Related]
13. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Wang H; Agarwal P; Zhao S; Xu RX; Yu J; Lu X; He X Biomaterials; 2015 Dec; 72():74-89. PubMed ID: 26344365 [TBL] [Abstract][Full Text] [Related]
14. Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles. Kennedy PJ; Perreira I; Ferreira D; Nestor M; Oliveira C; Granja PL; Sarmento B Eur J Pharm Biopharm; 2018 Jun; 127():366-370. PubMed ID: 29549023 [TBL] [Abstract][Full Text] [Related]
15. The targeting properties of folate-conjugated Pluronic F127/poly (lactic-co-glycolic) nanoparticles. Luo YY; Xiong XY; Cheng F; Gong YC; Li ZL; Li YP Int J Biol Macromol; 2017 Dec; 105(Pt 1):711-719. PubMed ID: 28716749 [TBL] [Abstract][Full Text] [Related]
16. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Win KY; Feng SS Biomaterials; 2005 May; 26(15):2713-22. PubMed ID: 15585275 [TBL] [Abstract][Full Text] [Related]
17. Effect of differential drying techniques on PLGA nanoparticles containing hydrophobic and hydrophilic anticancer agents. Dhapare SS; Dash AK Ther Deliv; 2015 Jan; 6(1):27-39. PubMed ID: 25565439 [TBL] [Abstract][Full Text] [Related]
18. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Dong Y; Feng SS Biomaterials; 2005 Oct; 26(30):6068-76. PubMed ID: 15894372 [TBL] [Abstract][Full Text] [Related]
19. Development of innovative paclitaxel-loaded small PLGA nanoparticles: study of their antiproliferative activity and their molecular interactions on prostatic cancer cells. Le Broc-Ryckewaert D; Carpentier R; Lipka E; Daher S; Vaccher C; Betbeder D; Furman C Int J Pharm; 2013 Oct; 454(2):712-9. PubMed ID: 23707251 [TBL] [Abstract][Full Text] [Related]
20. Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine A-induced nephrotoxicity in rats. Sonaje K; Italia JL; Sharma G; Bhardwaj V; Tikoo K; Kumar MN Pharm Res; 2007 May; 24(5):899-908. PubMed ID: 17377747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]