BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 25510641)

  • 1. Accumulation of iron oxide nanoparticles by cultured primary neurons.
    Petters C; Dringen R
    Neurochem Int; 2015 Feb; 81():1-9. PubMed ID: 25510641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells.
    Luther EM; Petters C; Bulcke F; Kaltz A; Thiel K; Bickmeyer U; Dringen R
    Acta Biomater; 2013 Sep; 9(9):8454-65. PubMed ID: 23727247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of fluorescent iron oxide nanoparticles by oligodendroglial OLN-93 cells.
    Petters C; Bulcke F; Thiel K; Bickmeyer U; Dringen R
    Neurochem Res; 2014 Feb; 39(2):372-83. PubMed ID: 24368627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes.
    Petters C; Thiel K; Dringen R
    Nanotoxicology; 2016; 10(3):332-42. PubMed ID: 26287375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes.
    Geppert M; Hohnholt MC; Thiel K; Nürnberger S; Grunwald I; Rezwan K; Dringen R
    Nanotechnology; 2011 Apr; 22(14):145101. PubMed ID: 21346306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles.
    Geppert M; Hohnholt MC; Nürnberger S; Dringen R
    Acta Biomater; 2012 Oct; 8(10):3832-9. PubMed ID: 22750736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells.
    Hohnholt MC; Geppert M; Dringen R
    Acta Biomater; 2011 Nov; 7(11):3946-54. PubMed ID: 21763792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic field-induced acceleration of the accumulation of magnetic iron oxide nanoparticles by cultured brain astrocytes.
    Lamkowsky MC; Geppert M; Schmidt MM; Dringen R
    J Biomed Mater Res A; 2012 Feb; 100(2):323-34. PubMed ID: 22065542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the toxic effects of iron oxide nanoparticles.
    Soenen SJ; De Cuyper M; De Smedt SC; Braeckmans K
    Methods Enzymol; 2012; 509():195-224. PubMed ID: 22568907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of the Cytoskeleton-Dependent Intracellular Trafficking of Fluorescent Iron Oxide Nanoparticles by Nanoparticle Pulse-Chase Experiments in C6 Glioma Cells.
    Willmann W; Dringen R
    Neurochem Res; 2018 Nov; 43(11):2055-2071. PubMed ID: 30196349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models.
    Sun Z; Yathindranath V; Worden M; Thliveris JA; Chu S; Parkinson FE; Hegmann T; Miller DW
    Int J Nanomedicine; 2013; 8():961-70. PubMed ID: 23494517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of silver nanoparticles by cultured primary brain astrocytes.
    Luther EM; Koehler Y; Diendorf J; Epple M; Dringen R
    Nanotechnology; 2011 Sep; 22(37):375101. PubMed ID: 21852719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways.
    Kim E; Kim JM; Kim L; Choi SJ; Park IS; Han JY; Chu YC; Choi ES; Na K; Hong SS
    Int J Nanomedicine; 2016; 11():4595-4607. PubMed ID: 27695320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and interfacing of biocompatible iron oxide nanoparticles through the ferroxidase activity of Helicobacter Pylori ferritin.
    Lee IL; Li PS; Yu WL; Shen HH
    Biofabrication; 2012 Dec; 4(4):045001. PubMed ID: 23013844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of poly-l-lysine-modified iron oxide nanoparticles uptake into cells.
    Li Z; Shuai C; Li X; Li X; Xiang J; Li G
    J Biomed Mater Res A; 2013 Oct; 101(10):2846-50. PubMed ID: 23504952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and metabolism of iron oxide nanoparticles in brain cells.
    Petters C; Irrsack E; Koch M; Dringen R
    Neurochem Res; 2014 Sep; 39(9):1648-60. PubMed ID: 25011394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of iron oxide nanoparticles by cultured brain astrocytes.
    Geppert M; Hohnholt M; Gaetjen L; Grunwald I; Bäumer M; Dringen R
    J Biomed Nanotechnol; 2009 Jun; 5(3):285-93. PubMed ID: 20055010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detailed toxicity evaluation of β-cyclodextrin coated iron oxide nanoparticles for biomedical applications.
    Shelat R; Chandra S; Khanna A
    Int J Biol Macromol; 2018 Apr; 110():357-365. PubMed ID: 28939520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of bare and surfaced functionalized iron oxide nanoparticles towards microalgae.
    Toh PY; Tai WY; Ahmad AL; Lim JK; Chan DJ
    Int J Phytoremediation; 2016; 18(6):643-50. PubMed ID: 26389846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses.
    Luo C; Li Y; Yang L; Wang X; Long J; Liu J
    Arch Toxicol; 2015 Mar; 89(3):357-69. PubMed ID: 24847785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.