These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 25510922)

  • 1. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M; Cortese M; Cempini M; Mellinger J; Vitiello N; Soekadar SR
    J Neuroeng Rehabil; 2014 Dec; 11():165. PubMed ID: 25510922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand.
    Soekadar SR; Witkowski M; Vitiello N; Birbaumer N
    Biomed Tech (Berl); 2015 Jun; 60(3):199-205. PubMed ID: 25490027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility and Safety of Bilateral Hybrid EEG/EOG Brain/Neural-Machine Interaction.
    Nann M; Peekhaus N; Angerhöfer C; Soekadar SR
    Front Hum Neurosci; 2020; 14():580105. PubMed ID: 33362490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM; Shedeed HA; Mabrouk MS; Tolba MF
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living.
    Crea S; Nann M; Trigili E; Cordella F; Baldoni A; Badesa FJ; Catalán JM; Zollo L; Vitiello N; Aracil NG; Soekadar SR
    Sci Rep; 2018 Jul; 8(1):10823. PubMed ID: 30018334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH; Williamson J; Won DO; Fazli S; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1443-1459. PubMed ID: 29985154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control.
    Tang Z; Sun S; Zhang S; Chen Y; Li C; Chen S
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia.
    Soekadar SR; Witkowski M; Gómez C; Opisso E; Medina J; Cortese M; Cempini M; Carrozza MC; Cohen LG; Birbaumer N; Vitiello N
    Sci Robot; 2016 Dec; 1(1):. PubMed ID: 33157855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs).
    Catalán JM; Trigili E; Nann M; Blanco-Ivorra A; Lauretti C; Cordella F; Ivorra E; Armstrong E; Crea S; Alcañiz M; Zollo L; Soekadar SR; Vitiello N; García-Aracil N
    J Neuroeng Rehabil; 2023 May; 20(1):61. PubMed ID: 37149621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic removal of eye-movement and blink artifacts from EEG signals.
    Gao JF; Yang Y; Lin P; Wang P; Zheng CX
    Brain Topogr; 2010 Mar; 23(1):105-14. PubMed ID: 20039116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG- and EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer.
    He S; Zhou Y; Yu T; Zhang R; Huang Q; Chuai L; Mustafa MU; Gu Z; Yu ZL; Tan H; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):519-530. PubMed ID: 31870987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions.
    Hortal E; Planelles D; Resquin F; Climent JM; Azorín JM; Pons JL
    J Neuroeng Rehabil; 2015 Oct; 12():92. PubMed ID: 26476869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model-based objective evaluation of eye movement correction in EEG recordings.
    Kierkels JJ; van Boxtel GJ; Vogten LL
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):246-53. PubMed ID: 16485753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case.
    Romero S; Mañanas MA; Barbanoj MJ
    Comput Biol Med; 2008 Mar; 38(3):348-60. PubMed ID: 18222418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological Responses During Hybrid BNCI Control of an Upper-Limb Exoskeleton.
    Badesa FJ; Diez JA; Catalan JM; Trigili E; Cordella F; Nann M; Crea S; Soekadar SR; Zollo L; Vitiello N; Garcia-Aracil N
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31726745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid EEG-EOG brain-computer interface system for practical machine control.
    Punsawad Y; Wongsawat Y; Parnichkun M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1360-3. PubMed ID: 21096331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multimodal approach to estimating vigilance using EEG and forehead EOG.
    Zheng WL; Lu BL
    J Neural Eng; 2017 Apr; 14(2):026017. PubMed ID: 28102833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.