These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 25510922)

  • 21. The Removal of EOG Artifacts From EEG Signals Using Independent Component Analysis and Multivariate Empirical Mode Decomposition.
    Wang G; Teng C; Li K; Zhang Z; Yan X
    IEEE J Biomed Health Inform; 2016 Sep; 20(5):1301-8. PubMed ID: 26126290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid EEG--Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal.
    Mannan MM; Kim S; Jeong MY; Kamran MA
    Sensors (Basel); 2016 Feb; 16(2):241. PubMed ID: 26907276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discriminative Ocular Artifact Correction for Feature Learning in EEG Analysis.
    Xinyang Li ; Cuntai Guan ; Haihong Zhang ; Kai Keng Ang
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1906-1913. PubMed ID: 28113291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.
    Wu SL; Liao LD; Lu SW; Jiang WL; Chen SA; Lin CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2133-41. PubMed ID: 23446030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Online removal of eye movement and blink EEG artifacts using a high-speed eye tracker.
    Noureddin B; Lawrence PD; Birch GE
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2103-10. PubMed ID: 21278013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification.
    Martínez-Cerveró J; Ardali MK; Jaramillo-Gonzalez A; Wu S; Tonin A; Birbaumer N; Chaudhary U
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32344820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EOG-Based Human-Computer Interface: 2000-2020 Review.
    Belkhiria C; Boudir A; Hurter C; Peysakhovich V
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hybrid BCI web browser based on EEG and EOG signals.
    Shenghong He ; Tianyou Yu ; Zhenghui Gu ; Yuanqing Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1006-1009. PubMed ID: 29060044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Event-related desynchronization during movement attempt and execution in severely paralyzed stroke patients: An artifact removal relevance analysis.
    López-Larraz E; Figueiredo TC; Insausti-Delgado A; Ziemann U; Birbaumer N; Ramos-Murguialday A
    Neuroimage Clin; 2018; 20():972-986. PubMed ID: 30312940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating neural correlates of locomotion transition via temporal relation of EEG and EOG-recorded eye movements.
    Mehra D; Tiwari A; Joshi D
    Comput Biol Med; 2021 May; 132():104350. PubMed ID: 33799217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurement of saccadic eye movements by electrooculography for simultaneous EEG recording.
    Jia Y; Tyler CW
    Behav Res Methods; 2019 Oct; 51(5):2139-2151. PubMed ID: 31313136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative evaluation of ocular artifact removal methods based on real and estimated EOG signals.
    Noureddin B; Lawrence PD; Birch GE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5041-4. PubMed ID: 19163849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ballistocardiogram artifact removal from EEG signals using adaptive filtering of EOG signals.
    In MH; Lee SY; Park TS; Kim TS; Cho MH; Ahn YB
    Physiol Meas; 2006 Nov; 27(11):1227-40. PubMed ID: 17028414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state.
    Käthner I; Kübler A; Halder S
    J Neuroeng Rehabil; 2015 Sep; 12():76. PubMed ID: 26338101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated CCA-MWF Algorithm for Unsupervised Identification and Removal of EOG Artifacts From EEG.
    Miao M; Hu W; Xu B; Zhang J; Rodrigues JJPC; de Albuquerque VHC
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3607-3617. PubMed ID: 34847047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput ocular artifact reduction in multichannel electroencephalography (EEG) using component subspace projection.
    Ma J; Bayram S; Tao P; Svetnik V
    J Neurosci Methods; 2011 Mar; 196(1):131-40. PubMed ID: 21236300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HMM based automated wheelchair navigation using EOG traces in EEG.
    Aziz F; Arof H; Mokhtar N; Mubin M
    J Neural Eng; 2014 Oct; 11(5):056018. PubMed ID: 25188730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Automatic removal algorithm of electrooculographic artifacts in non-invasive brain-computer interface based on independent component analysis].
    Song H; Xu S; Liu G; Liu J; Xiong P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Dec; 39(6):1074-1081. PubMed ID: 36575075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A spectral method for removing eye movement artifacts from the EEG.
    Whitton JL; Lue F; Moldofsky H
    Electroencephalogr Clin Neurophysiol; 1978 Jun; 44(6):735-41. PubMed ID: 78802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.
    Heo J; Yoon H; Park KS
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.