These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 25510964)
1. Analysis of the volatile organic compounds from leaves, flower spikes, and nectar of Australian grown Agastache rugosa. Yamani H; Mantri N; Morrison PD; Pang E BMC Complement Altern Med; 2014 Dec; 14():495. PubMed ID: 25510964 [TBL] [Abstract][Full Text] [Related]
2. [Chemical composition of essential oil in stems, leaves and flowers of Agastache rugosa]. Yang D; Wang F; Su J; Zeng L Zhong Yao Cai; 2000 Mar; 23(3):149-51. PubMed ID: 12575134 [TBL] [Abstract][Full Text] [Related]
3. Volatile compounds of Asphodelus microcarpus Salzm. et Viv. Honey obtained by HS-SPME and USE analyzed by GC/MS. Jerković I; Tuberoso CI; Kasum A; Marijanović Z Chem Biodivers; 2011 Apr; 8(4):587-98. PubMed ID: 21480505 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Biochemical Constituents and Contents in Floral Nectar of Kim YK; Lee S; Song JH; Kim MJ; Yunusbaev U; Lee ML; Kim MS; Kwon HW Molecules; 2020 Sep; 25(18):. PubMed ID: 32942597 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Physico-Chemical Properties and Antioxidant Capacities of Bioactive Honey Produced from Australian Grown Agastache rugosa and its Correlation with Colour and Poly-Phenol Content. Anand S; Pang E; Livanos G; Mantri N Molecules; 2018 Jan; 23(1):. PubMed ID: 29304019 [TBL] [Abstract][Full Text] [Related]
6. [Analysis of volatile constituents from leaves of plants by gas chromatography/mass spectrometry with solid-phase microextraction]. Wang M; Qiao L; Zhang L; Wu L; Tian H Se Pu; 2006 Jul; 24(4):343-6. PubMed ID: 17017156 [TBL] [Abstract][Full Text] [Related]
7. The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. Desta KT; Kim GS; Kim YH; Lee WS; Lee SJ; Jin JS; Abd El-Aty AM; Shin HC; Shim JH; Shin SC Biomed Chromatogr; 2016 Feb; 30(2):225-31. PubMed ID: 26094749 [TBL] [Abstract][Full Text] [Related]
8. Screening of volatile composition of Lavandula hybrida Reverchon II honey using headspace solid-phase microextraction and ultrasonic solvent extraction. Jerković I; Marijanović Z Chem Biodivers; 2009 Mar; 6(3):421-30. PubMed ID: 19319870 [TBL] [Abstract][Full Text] [Related]
9. Solid-phase microextraction of volatile organic compounds released from leaves and flowers of Artemisia fragrans, followed by GC and GC/MS analysis. Movafeghi A; Djozan Dj; Torbati S Nat Prod Res; 2010 Aug; 24(13):1235-42. PubMed ID: 20645210 [TBL] [Abstract][Full Text] [Related]
10. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species. Pattamayutanon P; Angeli S; Thakeow P; Abraham J; Disayathanoowat T; Chantawannakul P PLoS One; 2017; 12(2):e0172099. PubMed ID: 28192487 [TBL] [Abstract][Full Text] [Related]
12. Volatilomic Analysis of Four Edible Flowers from Najar B; Marchioni I; Ruffoni B; Copetta A; Pistelli L; Pistelli L Molecules; 2019 Dec; 24(24):. PubMed ID: 31817724 [TBL] [Abstract][Full Text] [Related]
13. Floral Scent Chemistry of Luculia yunnanensis (Rubiaceae), a Species Endemic to China with Sweetly Fragrant Flowers. Li Y; Wan Y; Sun Z; Li T; Liu X; Ma H; Liu X; He R; Ma Y; Li Z Molecules; 2017 May; 22(6):. PubMed ID: 28587077 [No Abstract] [Full Text] [Related]
14. Headspace Solid Phase Microextraction Coupled to GC/MS for the Analysis of Volatiles of Honeys from Arid and Mediterranean Areas of Algeria. Neggad A; Benkaci-Ali F; Alsafra Z; Eppe G Chem Biodivers; 2019 Oct; 16(10):e1900267. PubMed ID: 31419038 [TBL] [Abstract][Full Text] [Related]
15. From flower to honey bouquet: possible markers for the botanical origin of Robinia honey. Aronne G; Giovanetti M; Sacchi R; De Micco V ScientificWorldJournal; 2014; 2014():547275. PubMed ID: 25478595 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of volatile bioactive secondary metabolites transfer from medicinal and aromatic plants to herbal teas: Comparison of different methods for the determination of transfer rate and human intake. Sgorbini B; Cagliero C; Acquadro S; Marengo A; Cordero C; Liberto E; Bicchi C; Rubiolo P J Chromatogr A; 2019 Jun; 1594():173-180. PubMed ID: 30770143 [TBL] [Abstract][Full Text] [Related]
17. Solid-phase microextraction Arrow combined with comprehensive two-dimensional gas chromatography-mass spectrometry for the elucidation of the volatile composition of honey samples. Manousi N; Kalogiouri N; Ferracane A; Zachariadis GA; Samanidou VF; Tranchida PQ; Mondello L; Rosenberg E Anal Bioanal Chem; 2023 May; 415(13):2547-2560. PubMed ID: 36629895 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of volatile components from male and female flower buds of Xu L; Liu H; Ma Y; Wu C; Li R; Chao Z Nat Prod Res; 2019 Jul; 33(14):2105-2108. PubMed ID: 29897251 [TBL] [Abstract][Full Text] [Related]
19. Volatile compounds of five types of unifloral honey in Northwest China: Correlation with aroma and floral origin based on HS-SPME/GC-MS combined with chemometrics. Zhu M; Sun J; Zhao H; Wu F; Xue X; Wu L; Cao W Food Chem; 2022 Aug; 384():132461. PubMed ID: 35228000 [TBL] [Abstract][Full Text] [Related]
20. Volatile Organic Compounds Emissions from Luculia pinceana Flower and Its Changes at Different Stages of Flower Development. Li Y; Ma H; Wan Y; Li T; Liu X; Sun Z; Li Z Molecules; 2016 Apr; 21(4):531. PubMed ID: 27110758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]